Skip to Content
Merck
  • The synergistic effect of micro-topography and biochemical culture environment to promote angiogenesis and osteogenic differentiation of human mesenchymal stem cells.

The synergistic effect of micro-topography and biochemical culture environment to promote angiogenesis and osteogenic differentiation of human mesenchymal stem cells.

Acta biomaterialia (2015-03-05)
Shang Song, Eun Jung Kim, Chelsea S Bahney, Theodore Miclau, Ralph Marcucio, Shuvo Roy
ABSTRACT

Critical failures associated with current engineered bone grafts involve insufficient induction of osteogenesis of the implanted cells and lack of vascular integration between graft scaffold and host tissue. This study investigated the combined effects of surface microtextures and biochemical supplements to achieve osteogenic differentiation of human mesenchymal stem cells (hMSCs) and revascularization of the implants in vivo. Cells were cultured on 10μm micropost-textured polydimethylsiloxane (PDMS) substrates in either proliferative basal medium (BM) or osteogenic medium (OM). In vitro data revealed that cells on microtextured substrates in OM had dense coverage of extracellular matrix, whereas cells in BM displayed more cell spreading and branching. Cells on microtextured substrates in OM demonstrated a higher gene expression of osteoblast-specific markers, namely collagen I, alkaline phosphatase, bone sialoprotein, and osteocalcin, accompanied by substantial amount of bone matrix formation and mineralization. To further investigate the osteogenic capacity, hMSCs on microtextured substrates under different biochemical stimuli were implanted into subcutaneous pockets on the dorsal aspect of immunocompromised mice to study capacity for ectopic bone formation. In vivo data revealed greater expression of osteoblast-specific markers coupled with increased vascular invasion on microtextured substrates with hMSCs cultured in OM. Together, these data represent a novel regenerative strategy that incorporates defined surface microtextures and biochemical stimuli to direct combined osteogenesis and re-vascularization of engineered bone scaffolds for musculoskeletal repair and relevant bone tissue engineering applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycerol, Vetec, reagent grade, 99%
Sigma-Aldrich
FGF-2 human, recombinant, expressed in insect cells, ≥85% (SDS-PAGE)
Sigma-Aldrich
FGF-2 human, recombinant, expressed in E. coli, ≥95% (SDS-PAGE), ≥95% (HPLC)
Sigma-Aldrich
Ammonium-14N2 sulfate, 99.99 atom % 14N
Sigma-Aldrich
Ammonium sulfate, 99.999% trace metals basis
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Ammonium sulfate, BioUltra, ≥99.0% (T)
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
o-Xylene, anhydrous, 97%
Sigma-Aldrich
Sucrose, BioUltra, Molecular Biology, ≥99.5% (HPLC)
Sigma-Aldrich
Glycerol, BioUltra, Molecular Biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Ammonium sulfate, Molecular Biology, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, BioXtra, ≥99.0%
Sigma-Aldrich
Ammonium sulfate, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Dexamethasone, ≥98% (HPLC), powder
Sigma-Aldrich
Dexamethasone, meets USP testing specifications
Sigma-Aldrich
Hematoxylin, certified by the BSC
Sigma-Aldrich
Hematoxylin
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99% (GC), Grade I, suitable for plant cell culture
Sigma-Aldrich
Glycerol, Molecular Biology, ≥99.0%
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%