Protein Quantitation

Protein quantitation and protein assays are critical for accurately determining the protein concentration in a sample. There are a variety of protein quantitation methods including UV absorbance assays, reagent-based assays, and immunoassay technologies. Each of these protein quantitation technologies has unique benefits and the suitability of the assay depends on the sample type and/or volume that is available for analysis. For example, some of the dye-based assays may interfere with chemicals found in buffer preparations and an alternative assay may be more appropriate. Scientists need to consider the limitations of each assay to determine which is the best option for their sample.

UV Absorbance Assays

Using ultraviolet (UV) absorbance to measure protein concentration is a relatively simple protein quantitation assay. Amino acids with aromatic side chains (tryptophan, tyrosine, etc.) provide proteins with their distinctive UV absorbance at 280 nm. Because these amino acids absorb UV light at 280 nm, the absorbance at this particular wavelength can be obtained through a spectrophotometer and used to estimate protein concentrations in samples. This relatively quick assay is frequently used in laboratories and the Warburg-Christian method is typically performed for the protein concentration estimation. However, using UV absorbance for protein concentration may have high variability because non-protein components in a sample may interfere with absorbance measurements. Additionally, mixtures with different proteins in a sample could cause varying absorbance readings due to the difference in amino acid compositions.


Related Technical Articles

Related Protocols

  • Duolink® kits use in situ PLA®, a proximity ligation assay technology, to accurately and objectively quantify individual proteins, and their interactions and modifications in unmodified cells and tissue.
  • The video follows the simple and straightforward procedure that allows you to detect, quantify and obtain cell localization of protein interactions and their modifications in a single experiment.
  • This protocol describes the use of Duolink® PLA reagents for the brightfield detection, visualization, and quantification of individual proteins, protein modifications, and protein interactions in tissue and cell samples.
  • We recommend applying the counterstaining protocol after the completion of the Amplification step in section 7.3, step 5 of the Duolink In Situ Fluorescence User Manual.
  • Protocol for use of Duolink® PLA reagents for the detection of individual proteins, protein modifications, and protein-protein interactions within cell populations by flow cytometry.
  • See All

Reagent-Based Assays

Reagent-based assays overcome the compatibility issues that are observed with UV absorbance methods. Examples of reagent-based assays for protein quantitation include those that utilize colorimetric methods, such as bicinchoninic acid (BCA), Lowry, and Bradford assays. The BCA method and the Lowry method both involve the formation of a copper-protein complex. These are sensitive assays and are less variable than the Bradford assay. However, the Bradford assay is rapid, easy to perform, and is compatible with certain reducing agents, unlike the BCA and Lowry assays.

Immunoassays

Some assays may not be able to support accurate protein quantitation if there are multiple proteins in a sample or quantities are below the detection threshold. Powerful immunoassay technologies, using various detection methods, provide an alternate method to precisely quantitate proteins from a variety of sample types. For example, multiplex assays allow researchers to quantitate multiple proteins in a sample simultaneously. In addition, single molecule counting technology can measure femtogram levels of proteins to help identify and quantify low-level proteins in small samples. Research applications using these technologies include measuring biomarkers in healthy tissues or those associated with disease progression to better understand certain disease states.



Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.