HomecollectionsProfessor Product PortalAnita Mattson – Professor Product Portal

Anita Mattson – Professor Product Portal

Professor Anita Mattson

Professor Anita Mattson

Boronate ureas benefit from internal Lewis acid coordination of the urea cabonyl oxygen and the strategically placed boron. As a result of this structural feature, boronate ureas can be rendered more acidic than conventional urea hydrogen bond donor catalysts. These more acidic boronate ureas are stable, storable, easy to use, and can enable enhanced and/or unique reactivity patterns when compared to conventional urea catalysts.

Mattson Group Website

Recent papers from the Mattson Group

So SS, Mattson AE. 2012. Urea Activation of ?-Nitrodiazoesters: An Organocatalytic Approach to N?H Insertion Reactions. J. Am. Chem. Soc.. 134(21):8798-8801. http://dx.doi.org/10.1021/ja3031054
Auvil TJ, So SS, Mattson AE. 2013. Arylation of Diazoesters by a Transient N?H Insertion Organocascade. Angew. Chem. Int. Ed.. 52(43):11317-11320. http://dx.doi.org/10.1002/anie.201304921
Couch ED, Auvil TJ, Mattson AE. 2014. Urea-Induced Acid Amplification: A New Approach for Metal-Free Insertion Chemistry. Chem. Eur. J.. 20(27):8283-8287. http://dx.doi.org/10.1002/chem.201403283


  • Organic Synthetic Chemistry
  • Catalysis

Professor Product Portal Index

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.