6,6-Phenyl C61 butyric acid methyl ester


PCBM, 60PCBM, 3′H-Cyclopropa1,9 5,6fullerene-C60-Ih-3′-butanoic acid 3′-phenyl methyl ester, 1-3-(Methoxycarbonyl)propyl-1-phenyl-6.6C61
Empirical Formula (Hill Notation):
CAS Number:
Molecular Weight:
MDL number:
PubChem Substance ID:
Pricing and availability is not currently available.

Quality Level


functionalized fullerene




chlorobenzene: soluble
organic solvents: soluble
toluene: soluble

Orbital energy

HOMO 6.1 eV 
LUMO 3.7 eV 

semiconductor properties

N-type (mobility=0.21 cm2/V·s)

SMILES string


Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

6,6-Phenyl C61 butyric acid methyl ester (60PCBM) is a methanofullerene that has a better diffusion in organic molecules than fullerenes(C60). It has high electron mobility which allows it to be used as an electron acceptor in major electrochemical applications.


60PCBM is an n-type semi-conductor widely used as an a electron transport material with low cost and high surface area in different energy based applications like organic photovoltaics (OPVs), perovskite solar cells (PSCs), organic field effect transistors (OFETs) and photodetectors.
Soluble n-channel organic semiconductor. For use as an n-type layer in plastic electronics, especially bulk heterojunction OFETs and photovoltaic cells (PVs).


1 g in glass bottle

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves


NONH for all modes of transport

WGK Germany


Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis
Certificate of Origin
Independent control of open-circuit voltage of organic solar cells by changing film thickness of MoO3 buffer layer
Kinoshita, Y.; Takenaka, R.; Murata, H.
Applied Physics Letters, 92, 243309-243309 (2008)
Improving the photo current of the (60) PCBM/P3HT photodetector device by using wavelength-matched photonic crystals.
Li S, et al.
Journal of Material Chemistry C, 2(8), 1500-1504 (2014)
Efficient and highly air stable planar inverted Perovskite solar cells with reduced Graphene oxide doped PCBM electron transporting layer.
Kakavelakis G, et al.
Advanced Energy Materials, 7(7), 1602120-1602120 (2017)
Organic Single-Crystalline Donor-Acceptor Heterojunctions with Ambipolar Band-Like Charge Transport for Photovoltaics.
Zhao X, et al.
Advanced Materials Interfaces, 530(24), 1800336-1800336 (2018)
Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes.
Xu J, et al.
Nature Communications, 6(7), 7081-7081 (2015)
Since the first publication in 1995 describing a bulk heterojunction photodiode incorporating a methanofullerene, significant progress has been made in improving device performance and the scope of device research has broadened widely.
Read More
The field of organic electronics has emerged as the next-generation technology potentially enabling ultra-thin, large-area, and/or flexible devices, consisting of organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs), and organic photovoltaics (OPVs).
Read More
PCBM-based n-type semiconductors - Find p- and n-type organic semiconductors available from Sigma-Aldrich with PCBM library & properties.
Read More
Find various photovoltaic and bioscience-based applications of fullerenes.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.