Lithium manganese oxide

greener alternative

spinel, powder, <0.5 μm particle size (BET), >99%

Lithium manganese(III,IV) oxide, LMO
Linear Formula:
CAS Number:
Molecular Weight:
MDL number:
PubChem Substance ID:
Pricing and availability is not currently available.





greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

particle size

<0.5 μm (BET)


>400 °C (lit.)
400 °C


4.1 g/cm3 at 25 °C

Featured Industry

Battery Manufacturing

SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.
Lithium manganese oxide (LMO) is a class of electrode material that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.


LMO spinel powder is a cost-effective and thermally stable cathode material. It has a three-dimensional framework that is useful in the fabrication of lithium-ion batteries for hybrid electrical vehicles (HEVs).


25 g in poly bottle

Features and Benefits

Cathode Materials for High Energy Density Li-Ion Rechargeable Batteries; sub-micron particle size results in increased surface area of electrodes. The composition listed allows the preparation of battery electrodes with enhanced performance and durability.

Li-Batteries, material for electrodes design and manufacturing

Legal Information

Product of Engi-Mat Co.


NONH for all modes of transport

WGK Germany


Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis
Certificate of Origin
Ye, S. H.; Lu, J. Y.; Gao, X. P.; Wu, F.; Song, D. Y.
Electrochimica Acta, 49, 1623-1623 (2004)
Dudney, N. J.; Bates, J. B.; Zuhr, R. A.;
Journal of the Electrochemical Society, 146, 2455-2455 (1999)
Wu, H. M.; Tu, J. P.; Yuan, Y. F.; Li, Y.;
Physica B: Condensed Matter, 369, 221-221 (2005)
Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel
Julien CM and Massot M
Materials Science and Engineering, B, 97(3), 217-230 (2003)
Preparation of spinel lithium manganese oxide by aqueous co-precipitation
Naghash AR and Lee JY
Journal of Power Sources, 85(2), 284-293 (2000)
Increasing fuel costs and concerns about greenhouse gas emissions have spurred the growth in sales of hybrid electric vehicles (HEVs) that carry a battery pack to supplement the performance of the internal combustion engine (ICE).
Read More
Nanomaterials for Energy Storage in Lithium-ion Battery Applications
Read More
Professor Qiao’s laboratory lays out recent advances in conversion type lithium metal fluoride batteries. This review explores key concepts in developing electrochemically stable microstructures for wide Li-ion insertion channels.
Read More
Discover more about advancements being made to improve energy density of lithium ion battery materials.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.