753246

Sigma-Aldrich

RuPhos Pd G2

Synonym(s):
Chloro(2-dicyclohexylphosphino-2′,6′-diisopropoxy-1,1′-biphenyl)[2-(2′-amino-1,1′-biphenyl)]palladium(II), RuPhos-Pd-G2, 2nd Generation RuPhos Precatalyst
Empirical Formula (Hill Notation):
C42H53ClNO2PPd
CAS Number:
Molecular Weight:
776.72
MDL number:
PubChem Substance ID:
NACRES:
NA.22
Pricing and availability is not currently available.

Quality Level

feature

generation 2

reaction suitability

core: palladium
reaction type: Buchwald-Hartwig Cross Coupling Reaction
reaction type: Heck Reaction
reaction type: Hiyama Coupling
reaction type: Negishi Coupling
reaction type: Sonogashira Coupling
reaction type: Stille Coupling
reaction type: Suzuki-Miyaura Coupling
reagent type: catalyst
reaction type: Cross Couplings

mp

195-197 °C

functional group

phosphine

SMILES string

Nc1ccccc1-c2ccccc2[Pd]Cl.CC(C)Oc3cccc(OC(C)C)c3-c4ccccc4P(C5CCCCC5)C6CCCCC6

InChI

1S/C30H43O2P.C12H10N.ClH.Pd/c1-22(2)31-27-19-13-20-28(32-23(3)4)30(27)26-18-11-12-21-29(26)33(24-14-7-5-8-15-24)25-16-9-6-10-17-25;13-12-9-5-4-8-11(12)10-6-2-1-3-7-10;;/h11-13,18-25H,5-10,14-17H2,1-4H3;1-6,8-9H,13H2;1H;/q;;;+1/p-1

InChI key

VPDRBFBKNSFRSS-UHFFFAOYSA-M

General description

RuPhos Pd G2 is a second generation (G2) precatalyst containing a biphenyl-based ligand. Product participates in various palladium catalyzed cross-coupling reactions, C-C, C-N, and C-O bond formation reactions and Suzuki-Miyaura coupling reactions. It generates active Pd catalyst at room temperature in the presence of weak phosphate or carbonate bases.

Application

RuPhos Pd G2 may be employed as precatalyst in the preparation of fluoro-substituted diazatetracenes and diazapentacenes, via Pd-catalyzed aryl amination reaction.

Packaging

250 mg in glass bottle
1, 5 g in glass bottle

Other Notes

May contain <1% acetone.

RIDADR

NONH for all modes of transport

WGK Germany

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Jonas Schwaben et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 21(39), 13758-13771 (2015-08-08)
Non-symmetrical 6,13-disubstituted pentacenes bearing trifluoromethyl and aryl substituents have been synthesized starting from pentacenequinone. Diazapentacenes with a variety of fluorine substituents were prepared either via a Hartwig-Buchwald aryl amination route or by a SNAr strategy. As a result of a...
Articles
All of the preformed catalysts used in the kit are air and moisture stable complexes in their commercially available form. Once activated by base under the reaction conditions they become sensitive to air. To best enable scale-up success, the use of standard Schlenk technique is recommended.
Read More
All contents in the foil bag are weighed, plated, packed, and sealed in a glove box under nitrogen.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.