Lithium nickel cobalt aluminium oxide

greener alternative

powder, <0.5 μm particle size, >98%

Linear Formula:
CAS Number:
Pricing and availability is not currently available.

Quality Level





greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

particle size

<0.5 μm


>1000 °C (lit.)

Featured Industry

Battery Manufacturing

Related Categories

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.
Lithium nickel cobalt aluminium oxide (NCA) is a class of electrode material that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
Lithium nickel cobalt mixed oxide which is a continuous solid solution series between lithium nickel oxide and lithium cobalt oxide is widely used as a positive electrode for Lithium Ion Batteries. Lithium nickel cobalt aluminium oxide (LNCA) belongs to this family of layered transition metal oxides and is used as a cathode in Lithium Ion batteries in plug-in electric hybrid vehicles. Aluminium substitution in the cathode increases the cycling and thermal stability.


Lithium nickel cobalt aluminum oxide (LNCO) can be used as a thermally stable cathode material. It shows good cyclic performance and can be operated around 3.65V. It is further utilized in the fabrication of lithium-ion batteries for hybrid electric vehicles.
NCA is Aluminum doped Lithium nickel cobalt oxide (LNCO). Al doping is found very effective to suppress the cell impedance rise by stabilizing the charge-transfer impedance on the cathode side besides increasing the thermal stability of the material. NCA shows excellent electrochemical performance.


10 g in glass bottle

Features and Benefits

High specific reversible capacity, good cycling stability and good thermal stability.

Legal Information

Product of Engi-Mat Co.


Exclamation markHealth hazard

Signal Word


Hazard Statements

Hazard Codes


Risk Statement


Safety Statement



NONH for all modes of transport

WGK Germany


Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis
Certificate of Origin
Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies
Beattie SD, et al.
Journal of Power Sources, 302, 426-430 (2016)
Examining different recycling processes for lithium-ion batteries
Ciez RE and Whitacre JF
Chemosphere, 2(2), 148-156 (2019)
Tran, H. Y.; et al.
Journal of the Electrochemical Society, 158, A556-A556 (2011)
Doped lithium nickel cobalt mixed oxides for the positive electrode in lithium ion batteries.
Vogler, C., Loffler, B., Weirather, W., Wohlfahrt-Mehrens, M., &amp; Garche, J.
Ionics, 8(1-2), 92-99 (2002)
A reduced order electrochemical thermal model for lithium ion cells
Gambhire P, et al.
Journal of Power Sources, 290, 87-101 (2015)
Professor Qiao’s laboratory lays out recent advances in conversion type lithium metal fluoride batteries. This review explores key concepts in developing electrochemically stable microstructures for wide Li-ion insertion channels.
Read More
Discover more about advancements being made to improve energy density of lithium ion battery materials.
Read More
Li-ion batteries are currently the focus of numerous research efforts with applications designed to reduce carbon-based emissions and improve energy storage capabilities.
Read More
Lithium-ion batteries (LIBs) have been widely adopted as the most promising portable energy source in electronic devices because of their high working voltage, high energy density, and good cyclic performance.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.