Sodium L-lactate


L-Lactic acid sodium salt, (S)-2-Hydroxypropionic acid sodium salt, Sarcolactic acid sodium salt
Empirical Formula (Hill Notation):
CAS Number:
Molecular Weight:
Beilstein/REAXYS Number:
EC Number:
MDL number:
PubChem Substance ID:

Quality Level




163-165 °C (lit.)

storage temp.


SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide


Sodium L-lactate has been used:
  • as a medium supplement and cell fuel source for human mammary epithelial cell line(MCF10A) and dendritic cell culture
  • as a gluconeogenic substrate in hepatic glucose production assay in primary hepatocytes
  • in the glucose production medium for glucose production assay in human embryonic kidney (HEK293T) cells
  • as a standard for calibration in lactate assay in bone marrow-derived macrophages


5, 10, 50 g in glass bottle

Biochem/physiol Actions

L-lactate is produced from pyruvate by the enzyme lactate dehydrogenase. Lactate production occurs during anaerobic glycolysis or in proliferatively active cells.

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves


NONH for all modes of transport

WGK Germany


Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis

Certificate of Origin

Protein-bound NAD (P) H Lifetime is Sensitive to Multiple Fates of Glucose Carbon
Sharick JT, et al.
Scientific Reports, 8(1), 5456-5456 (2018)
Alternative splicing variant of the scaffold protein APPL1 suppresses hepatic adiponectin signaling and function
Galan-Davila AK, et al.
The Journal of Biological Chemistry, jbc-RA118 (2018)
Neuronal and astroglial monocarboxylate transporters play key but distinct roles in hippocampus-dependent learning and memory formation.
Netzahualcoyotzi, et al.
Progress in Neurobiology, 194, 101888-101888 (2020)
Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis
Divakaruni AS, et al.
Cell Metabolism, 28(3), 490-503 (2018)
Latent, Immunosuppressive Nature of Poly (lactic-co-glycolic acid) Microparticles
Allen RP, et al.
ACS biomaterials science & engineering, 4(3), 900-918 (2018)
Sigma-Aldrich presents an article about how proliferatively active cells require both a source of carbon and of nitrogen for the synthesis of macromolecules. Although a large proportion of tumor cells utilize aerobic glycolysis and shunt metabolites away from mitochondrial oxidative phosphorylation, many tumor cells exhibit increased mitochondrial activity.
Read More
We presents an article about the Warburg effect, and how it is the enhanced conversion of glucose to lactate observed in tumor cells, even in the presence of normal levels of oxygen. Otto Heinrich Warburg demonstrated in 1924 that cancer cells show an increased dependence on glycolysis to meet their energy needs, regardless of whether they were well-oxygenated or not.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.