Atto 655

BioReagent, suitable for fluorescence, ≥85% (HPLC)

MDL number:
PubChem Substance ID:
Pricing and availability is not currently available.

product line



≥85% (HPLC)


λex 655 nm; λem 680 nm in 0.1 M phosphate pH 7.0


suitable for fluorescence

storage temp.




InChI key


Looking for similar products? Visit Product Comparison Guide


Atto labels are designed for highest sensitivity applications. A unique combination of advantages makes them highly favorable tools for all kinds of labeling applications. Some of their properties make them specifically interesting for single molecule detection. Atto labels are based on rigid structures and do not show any cis-trans-isomerization, which lowers the brightness of signals and leads to environment dependency, e.g., spectral shifts by conjugation.
Atto 655 shows a molar extinction of 110,000 and QY of 30% in water (50% in ethanol). Decay time is 1.9 ns.

Other Notes

New red absorbing fluorescent dye with best signal-to-noise ratio and long fluorescence life-time. Useful as a biophysical probe for binding interactions.

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves


NONH for all modes of transport

WGK Germany


Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Volker Buschmann et al.
Bioconjugate chemistry, 14(1), 195-204 (2003-01-16)
The spectroscopic characteristics (absorption, emission, and fluorescence lifetime) of 13 commercially available red-absorbing fluorescent dyes were studied under a variety of conditions. The dyes included in this study are Alexa647, ATTO655, ATTO680, Bodipy630/650, Cy5, Cy5.5, DiD, DY-630, DY-635, DY-640, DY-650...
Bengang Xing et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 17(50), 14170-14177 (2011-11-16)
The molecular interactions of the glycopeptide antibiotic vancomycin (Van) with bacterial cell wall analogues N,N'-diacetyl-L-Lys-D-Ala-D-Ala (Ac(2) KdAdA) and N,N'-diacetyl-L-Lys-D-Ala-D-Lac (Ac(2) KdAdL) were investigated in neat water, phosphate buffer and HEPES buffer by using fluorescence correlation spectroscopy (FCS) and molecular dynamics...
Sridharan Rajagopalan et al.
Nucleic acids research, 39(6), 2294-2303 (2010-11-26)
The state of oligomerization of the tumor suppressor p53 is an important factor in its various biological functions. It has a well-defined tetramerization domain, and the protein exists as monomers, dimers and tetramers in equilibrium. The dissociation constants between oligomeric...
Zhixing Chen et al.
Journal of the American Chemical Society, 134(33), 13692-13699 (2012-08-10)
Chemical tags are now viable alternatives to fluorescent proteins for labeling proteins in living cells with organic fluorophores that have improved brightness and other specialized properties. Recently, we successfully rendered our TMP-tag covalent with a proximity-induced reaction between the protein...
John G Bruno et al.
Combinatorial chemistry & high throughput screening, 14(7), 622-630 (2011-05-04)
Several different approaches have been taken to development of homogeneous fluorescent aptamer assays including end-labeled beacons and signaling aptamers which are intrinsically quenched by nucleotides. Two new strategies dubbed "intrachain" and "competitive" FRET-aptamer assays are summarized in this review. Intrachain...

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.