MilliporeSigma
All Photos(4)

Documents

181986

Sigma-Aldrich

Poly(ethylene oxide)

average Mv 100,000 (nominal), powder

Sign Into View Organizational & Contract Pricing

Synonym(s):
PEO
Linear Formula:
(-CH2CH2O-)n
CAS Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

form

powder

Quality Level

mol wt

average Mv 100,000 (nominal)

contains

200-500 ppm BHT as inhibitor

refractive index

n20/D 1.4539

viscosity

12-50 cP, 5 % in H2O(25 °C, Brookfield)(lit.)

transition temp

Tg −67 °C
Tm 65 °C

density

1.13 g/mL at 25 °C

Ω-end

hydroxyl

α-end

hydroxyl

SMILES string

[H]OCCO

InChI

1S/C2H6O2/c3-1-2-4/h3-4H,1-2H2

InChI key

LYCAIKOWRPUZTN-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
189456181994372773
Poly(ethylene oxide) average Mv 100,000 (nominal), powder

181986

Poly(ethylene oxide)

Poly(ethylene oxide) average Mv ~900,000 (nominal), powder

189456

Poly(ethylene oxide)

Poly(ethylene oxide) average Mv 200,000 (nominal), powder

181994

Poly(ethylene oxide)

Poly(ethylene oxide) average Mv 400,000 (nominal), powder

372773

Poly(ethylene oxide)

α-end

hydroxyl

α-end

-

α-end

hydroxyl

α-end

hydroxyl

mol wt

average Mv 100,000 (nominal)

mol wt

average Mv ~900,000 (nominal)

mol wt

average Mv 200,000 (nominal)

mol wt

average Mv 400,000 (nominal)

Ω-end

hydroxyl

Ω-end

-

Ω-end

hydroxyl

Ω-end

hydroxyl

transition temp

Tg −67 °C, Tm 65 °C

transition temp

Tm 65 °C

transition temp

Tm 65 °C

transition temp

Tm 65 °C

density

1.13 g/mL at 25 °C

density

1.21 g/mL at 25 °C

density

-

density

-

General description

Poly(ethylene oxide) is a non-ionic hydrophilic linear polymer. It can be prepared by catalytic polymerization of ethylene oxide. Owing to its hydration and swelling properties, it is widely used in controlled drug delivery systems and bioadhesive materials.

Application

PEO can be used to:
  • Prepare polymer brushes with unique wormlike conformation which can be used in cancer drug delivery systems.
  • Synthesize polymer electrolytes for solid-state batteries and fuel cells.
  • Prepare biodegradable PEO/Ag nanocomposites forbiomedical and food packaging applications.

Features and Benefits

  • High water solubility
  • Non-toxicity
  • Rapid hydration
  • Insensitive to pH of the physiological system

Storage Class

11 - Combustible Solids

wgk_germany

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Wang, X.-L., et al.
Jiangsu Huagong, 32, 27-27 (2004)
Alexandre Goyon et al.
Electrophoresis, 39(16), 2083-2090 (2018-05-19)
The determination of mAb critical quality attributes (CQA) is crucial for their successful application in health diseases. A generic CZE method was developed for the high-resolution separation of various mAb charge variants, which are often recognized as important CQA. A
Yeonsu Jung et al.
Proceedings of the National Academy of Sciences of the United States of America, 118(3) (2021-01-13)
Mud nests built by swallows (Hirundinidae) and phoebes (Sayornis) are stable granular piles attached to cliffs, walls, or ceilings. Although these birds have been observed to mix saliva with incohesive mud granules, how such biopolymer solutions provide the nest with
P I Polimeni et al.
Journal of cardiovascular pharmacology, 14(3), 374-380 (1989-09-01)
The acute hemodynamic effects of an intravenously (i.v.) injected poly(ethylene oxide), Polyox WSR N-60K (dose 50 mg/kg), were studied in the open-chest rat anesthetized with sodium pentobarbital. The injectate is one of four drag-reducing polymers known to augment in vitro
D D Smyth et al.
Cardiovascular drugs and therapy, 4(1), 297-300 (1990-02-01)
Previous studies have demonstrated that Separan AP-30, a drag-reducing polymer, significantly decreased the formation of atherosclerotic plaques in rabbits fed a high-cholesterol diet. Furthermore, Separan AP-273, a polymer similar to but longer than Separan AP-30, markedly increased cardiac output in

Articles

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Devising biomaterial scaffolds that are capable of recapitulating critical aspects of the complex extracellular nature of living tissues in a threedimensional (3D) fashion is a challenging requirement in the field of tissue engineering and regenerative medicine.

Related Content

This capabilities video explores our Contract manufacturing (CMO) expertise including our global supply chain, ISO 13485 manufacturing sites, quality systems and regulatory guidance for clinical device and IVD production.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service