MilliporeSigma
All Photos(2)

Documents

250295

Sigma-Aldrich

1,8-Diiodooctane

98%, contains copper as stabilizer

Sign Into View Organizational & Contract Pricing

Synonym(s):
Octamethylene diiodide
Linear Formula:
I(CH2)8I
CAS Number:
Molecular Weight:
366.02
Beilstein/REAXYS Number:
1735437
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.22

assay

98%

form

liquid

contains

copper as stabilizer

refractive index

n20/D 1.5653 (lit.)

bp

167-169 °C/6 mmHg (lit.)

density

1.84 g/mL at 25 °C (lit.)

SMILES string

ICCCCCCCCI

InChI

1S/C8H16I2/c9-7-5-3-1-2-4-6-8-10/h1-8H2

InChI key

KZDTZHQLABJVLE-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
D122807D42607D122602
vibrant-m

250295

1,8-Diiodooctane

vibrant-m

D122807

1,2-Diiodoethane

vibrant-m

D42607

1,8-Dibromooctane

vibrant-m

D122602

1,4-Diiodobutane

bp

167-169 °C/6 mmHg (lit.)

bp

-

bp

270-272 °C (lit.)

bp

147-152 °C/26 mmHg (lit.)

form

liquid

form

powder or crystals

form

liquid

form

liquid

refractive index

n20/D 1.5653 (lit.)

refractive index

-

refractive index

n20/D 1.498 (lit.)

refractive index

n20/D 1.621 (lit.)

density

1.84 g/mL at 25 °C (lit.)

density

2.132 g/mL at 25 °C (lit.)

density

1.477 g/mL at 25 °C (lit.)

density

2.35 g/mL at 25 °C (lit.)

contains

copper as stabilizer

contains

-

contains

-

contains

copper as stabilizer

Application

1,8-Diiodooctane has been employed as processing additive:
  • to improve the morphology and the efficiency of bulk heterojunctions solar cells, based on the regioregular poly(3-hexylthiophene) and a soluble fullerene derivative
  • to improve the power conversion efficiency of polymer solar cells

hcodes

Hazard Classifications

Aquatic Chronic 4

Storage Class

10 - Combustible liquids

wgk_germany

WGK 3

flash_point_f

235.4 °F - closed cup

flash_point_c

113 °C - closed cup

ppe

Eyeshields, Gloves, type ABEK (EN14387) respirator filter


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Slide 1 of 7

1 of 7

Wang Li et al.
ACS applied materials & interfaces, 9(32), 27083-27089 (2017-07-27)
The development of simple and water-/alcohol-soluble interfacial materials is crucial for the cost-effective fabrication process of polymer solar cells (PSCs). Herein, highly efficient PSCs are reported employing water-/alcohol-soluble and low-cost rhodamines as cathode interfacial layers (CILs). The results reveal that
Chengkai Xia et al.
Polymers, 12(8) (2020-08-14)
In this study, a solution-processable compact vanadium oxide (V2O5) film with a globular nanoparticulate structure is introduced to the hole transport layer (HTL) of polymer bulk-heterojunction based solar cells comprised of PTB7:PC70BM by using a facile metal-organic decomposition method to
Satvik Shah et al.
Nanoscale, 9(25), 8665-8673 (2017-06-15)
Degradation is among the most pressing problems facing organic materials, occurring through ingress of moisture and oxygen, and light exposure. We determine the nanoscale pathways underlying degradation by light-soaking organic films in an environmental chamber, and performing infrared spectroscopy, to
Xing Fan et al.
Journal of nanoscience and nanotechnology, 14(5), 3592-3596 (2014-04-17)
Controlling the blend morphology is critical for achieving high power conversion efficiency in polymer/fullerene bulk heterojunction (BHJ) photovoltaic devices. As a simple and effective method to control morphology, adding processing additives has been widely applied in the organic BHJ solar
Zelin Li et al.
Small (Weinheim an der Bergstrasse, Germany), 14(16), e1704491-e1704491 (2018-03-24)
In recent years, rapid advances are achieved in polymer solar cells (PSCs) using nonfullerene small molecular acceptors. However, no research disclosing the influence of molecular weight (Mn ) of conjugated polymer on the nonfullerene device performance is reported. In this

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service