MilliporeSigma
All Photos(2)

Documents

289175

Sigma-Aldrich

Neodymium(III) nitrate hexahydrate

99.9% trace metals basis

Synonym(s):
Neodymium nitrate hexahydrate, Neodymium trinitrate hexahydrate, Neodymium(3+) trinitrate hexahydrate
Linear Formula:
Nd(NO3)3 · 6H2O
CAS Number:
Molecular Weight:
438.35
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Quality Level

Assay

99.9% trace metals basis

form

crystalline

reaction suitability

reagent type: catalyst
core: neodymium

impurities

≤1500.0 ppm Trace Rare Earth Analysis

SMILES string

O.O.O.O.O.O.[Nd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O

InChI

1S/3NO3.Nd.6H2O/c3*2-1(3)4;;;;;;;/h;;;;6*1H2/q3*-1;+3;;;;;;

InChI key

VQVDTKCSDUNYBO-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
205133289183449946
form

crystalline

form

crystalline

form

crystals and lumps

form

powder

impurities

≤1500.0 ppm Trace Rare Earth Analysis

impurities

≤2000 ppm Trace Metal Analysis

impurities

≤1500.0 ppm Trace Rare Earth Analysis

impurities

≤100.0 ppm Trace Rare Earth Analysis

reaction suitability

reagent type: catalyst
core: neodymium

reaction suitability

reagent type: catalyst
core: praseodymium

reaction suitability

reagent type: catalyst
core: neodymium

reaction suitability

reagent type: catalyst
core: neodymium

Application

Neodymium(III) nitrate hexahydrate has a variety of uses such as:
  • fabrication of perovskite based solid oxide fuel cells.
  • synthesis of Nd3+ doped vanadium pentoxide nanostructure for potential usage in supercapacitors.
  • a catalyst for Friedlander synthesis of surface modified quinolones for application in medicinal chemistry.

Pictograms

Flame over circleExclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Ox. Sol. 3 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

5.1B - Oxidizing hazardous materials

WGK

WGK 2

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (Example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

A perovskite-type Nd 0.75 Sr 0.25 Co 0.8 Fe 0.2 O 3- delta cathode for advanced solid oxide fuel cells
Mulmi S and Thangadurai V
Chemical Communications (Cambridge, England), 55(26), 3713-3716 (2019)
Sudip Biswas et al.
Talanta, 206, 120176-120176 (2019-09-14)
Nd2O3 nanoparticle grafted graphene nanocomposite (NOGG) was synthesized by sonochemical treatment of an ethanolic dispersion of Nd2O3 nanoparticle and graphene. All the synthesized materials were characterized by XRD, FESEM, TEM, and BET. The NOGG has a high specific surface area
Asmae El Maangar et al.
Physical chemistry chemical physics : PCCP, 22(10), 5449-5462 (2020-02-23)
A microfluidic technique is coupled with X-ray fluorescence in order to investigate the origin of the so-called synergy effect observed in liquid-liquid extraction of rare earth elements (REEs) when special combinations of two extractants - one solvating and one ionic
Photocatalytic degradation performance of Nd3+ doped V2O5 nanostructures
Navyashree GR, et al.
Materials Research Express, 5(9), 095007-095007 (2018)
R Turgis et al.
Dalton transactions (Cambridge, England : 2003), 45(3), 1259-1268 (2015-12-18)
The extraction of rare earth elements (REEs) from nitric acid solution with a triphosphine trioxide (TPO) is presented. Performances of such a ligand in ionic liquids vs. a classical solvent (benzyl ether) are compared. TPO seems to be 10 to

Articles

The Rare Earth Crisis—The Supply/Demand Situation for 2010–2015

The rare earth elements impact nearly everyone in the world. All of the people living in advanced technological countries and almost all those living in third world countries utilize the rare earths in their everyday living—the car that one drives (gasoline is refined from oil using rare earth catalysts and catalytic converters reduce the polluting emissions from the automotive exhaust), watching the news on TV (the red and green colors in TV screens), the telephones and computers we use to communicate (the permanent magnets in speakers and disc drives), just to name a few examples.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service