All Photos(1)

349240

Sigma-Aldrich

Gold

foil, thickness 0.25 mm, ≥99.9% trace metals basis

Empirical Formula (Hill Notation):
Au
CAS Number:
Molecular Weight:
196.97
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Quality Level

assay

≥99.9% trace metals basis

form

foil

resistivity

2.05 μΩ-cm, 0°C

thickness

0.25 mm

bp

2808 °C (lit.)

mp

1063 °C (lit.)

density

19.3 g/mL at 25 °C (lit.)

SMILES string

[Au]

InChI

1S/Au

InChI key

PCHJSUWPFVWCPO-UHFFFAOYSA-N

Related Categories

General description

Gold is one of the most popular materials to be used for neutron flux monitoring mainly because it possesses a large thermal cross section for neutron capture (197Au(η, η) 198Au. Gold has the half-life of 2.7 days. Reports show that the rate of dissolution of Au is very fast in SnPb solder.

Application

Gold based neutron flux monitors may use gold foils. Au foils may be used to form a AuSn/Au joint system for opto-electronic chips. Modified gold foil electrode may be used to study heterogeneous electron transfer properties of biological electron transfer proteins.3 Electrodeposited polycrystalline palladium-nickel alloy on gold foils may be investigated for the enhanced catalytic behavior of the alloy.

Packaging

3, 12 g in rigid mailer

Quantity

3 g = 25 × 25 mm; 12 g = 50 × 50 mm

Storage Class Code

11 - Combustible Solids

WGK Germany

nwg

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves

Certificate of Analysis

Certificate of Origin

Study of wetting reaction between eutectic AuSn and Au foil.
Lai YT and Liu CY
Journal of Electronic Materials, 35, 28-34 (2006)
Performance and comparison of gold-based neutron flux monitors.
Steinhauser G, et al.
Gold Bulletin, 45, 17-22 (2012)
A kinetic study of oxygen reduction reaction on palladium-nickel alloy surfaces.
Li B, et al.
Electrochemical Society Transactions, 6(25), 139-144 (2008)
Midas touch in cardiology.
Marianna Karamanou et al.
European heart journal, 34(20), 1463-1464 (2013-07-11)
Young Joo Choi et al.
Journal of nanoscience and nanotechnology, 13(6), 4437-4445 (2013-07-19)
Gold nanorods (Au NRs) that absorb near-infrared (NIR) light have great potential in the field of nanomedicine. Photothermal therapy (PTT), a very attractive cancer therapy in nanomedicine, combines nanomaterials and light. The aim of this study was to elucidate the...

Articles

Combinatorial Materials Science for Energy Applications

Can there be an effective strategy for finding breakthrough materials, since they are, by definition, unpredictable? One answer is found in Combinatorial Materials Science techniques, which represent a powerful approach to identifying new and unexpected materials.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service