All Photos(1)

374598

Sigma-Aldrich

Cetyltrimethylammonium hydrogensulfate

99%

Linear Formula:
CH3(CH2)15N(HSO4)(CH3)3
CAS Number:
Molecular Weight:
381.61
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.22

Quality Level

assay

99%

mp

250-260 °C (dec.) (lit.)

SMILES string

OS([O-])(=O)=O.CCCCCCCCCCCCCCCC[N+](C)(C)C

InChI

1S/C19H42N.H2O4S/c1-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(2,3)4;1-5(2,3)4/h5-19H2,1-4H3;(H2,1,2,3,4)/q+1;/p-1

InChI key

UCRJJNVFJGKYQT-UHFFFAOYSA-M

Looking for similar products? Visit Product Comparison Guide

Application

Cetyltrimethylammonium hydrogensulfate is commonly used as a surfactant for organic transformation in the aqueous medium.
Some of the applications include:
  • Rhodium(I)-catalyzed asymmetric hydrogenation of (Z)-methyl-α-acetamidocinnamate.
  • Asymmetric palladium-catalyzed alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate.

Packaging

5 g in glass bottle

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves

Certificate of Analysis

Certificate of Origin

Influence of different types of amphiphiles on the rhodium (I) complex-catalyzed asymmetric hydrogenation of (Z)-methyl-α-acetamidocinnamate in aqueous medium
Grassert I, et al.
Tetrahedron, 49(30), 6605-6612 (1993)
Catalytic asymmetric alkylation in water in the presence of surfactants
Sinou D, et al.
advanced synthesis and catalysis, 345(3), 357-363 (2003)
Micellar effects upon oxidation of organic sulfides by anionic oxidants
Bacaloglu R, et al.
Journal of Physical Organic Chemistry, 5(4), 171-178 (1992)
Qin Zhou et al.
Chemosphere, 90(9), 2461-2466 (2012-12-12)
The hexadecyltrimethylammonium bromide (HDTMAB) immobilized hollow mesoporous silica spheres were prepared for the efficient removal of perfluorooctane sulfonate (PFOS) from aqueous solution. Besides the traditional sorption behavior including sorption kinetics as well as effect of solution pH and temperature, the
Tanja Mehling et al.
Journal of chromatography. A, 1273, 66-72 (2013-01-01)
Several methods for the description of the retention behavior in micellar liquid chromatography (MLC) were described previously. Thereby, the most common are the linear solvation energy relationships (LSER). However, for the evaluation of the LSER, a number of experimental data

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service