440914

Sigma-Aldrich

2,2′-Azobis(2-methylpropionamidine) dihydrochloride

granular, 97%

Synonym(s):
α,α′-Azodiisobutyramidine dihydrochloride, AAPH
Linear Formula:
[=NC(CH3)2C(=NH)NH2]2·2HCl
CAS Number:
Molecular Weight:
271.19
Beilstein/REAXYS Number:
3718854
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23
Pricing and availability is not currently available.

Quality Level

assay

97%

form

granular

t1/2

10 hr(56 °C)

mp

175-177 °C (lit.)

solubility

acetone, dioxane, methanol, ethanol, DMSO and water: soluble

SMILES string

Cl.Cl.CC(C)(\N=N\C(C)(C)C(N)=N)C(N)=N

InChI

1S/C8H18N6.2ClH/c1-7(2,5(9)10)13-14-8(3,4)6(11)12;;/h1-4H3,(H3,9,10)(H3,11,12);2*1H/b14-13+;;

InChI key

LXEKPEMOWBOYRF-QDBORUFSSA-N

Related Categories

Packaging

25, 100 g in poly bottle

Application

Free radical initiator.
Polymerization initiator for acrylic, vinyl and allyl monomers.

Features and Benefits

Undergoes first order decomposition to a cationic radical. Decomposes on exposure to UV. Compatible with cationic surfactants. Decomposition rate is pH dependent

Signal Word

Danger

RIDADR

UN3226 - class 4.1 - Self-reactive solid type D (2,2'-AZOBIS(2-AMIDINOPROPANE)-DIHYDROCHLORIDE)

WGK Germany

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis
Certificate of Origin
A Nakajima et al.
Analytical and bioanalytical chemistry, 403(7), 1961-1970 (2012-05-01)
The characteristics of the spin-trapping reaction in the oxygen radical absorbance capacity (ORAC)-electron spin resonance (ESR) assay were examined, focusing on the kind of spin traps. 2,2-Azobis(2-amidinopropane) dihydrochloride (AAPH) was used as a free radical initiator. The spin adducts of...
Ju-Young Ko et al.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 52, 113-120 (2012-11-14)
We investigated the effects of bioactive-peptides from hydrolysates of flounder fish muscle (FFM) on antioxidant activity. The hydrolysates were prepared by enzymatic reactions of FFM using eight commercial proteases such as papain, pepsin, trypsin, neutrase, alcalase, kojizyme, protamex, and α-chymotrypsin....
Shawn N Watson et al.
Neurobiology of aging, 34(2), 610-620 (2012-03-31)
Memory failure associated with changes in neuronal circuit functions rather than cell death is a common feature of normal aging in diverse animal species. The (neuro)biological foundations of this phenomenon are not well understood although oxidative stress, particularly in the...
Nitya Jani et al.
Journal of pharmacological and toxicological methods, 65(3), 142-146 (2012-04-18)
Radical-induced haemolysis has been employed by many investigators to determine the antioxidant capacity of novel compounds. However the free radical generator 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) results in the complete depletion of intracellular reduced glutathione (GSH) in cells that can no...
Jia-Yu Wang et al.
Biomacromolecules, 13(9), 2616-2623 (2012-07-20)
PEO-PPO-PEO triblock copolymers have opposing effects on lipid membrane integrity: they can behave either as membrane sealants or as membrane permeabilizers. To gain insights into their biomembrane activities, the fundamental interactions between a series of PEO-based polymers and phospholipid vesicles...
Articles
We presents an article about a micro review of reversible addition/fragmentation chain transfer (RAFT) polymerization. RAFT (Reversible Addition/Fragmentation Chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.
Read More
Tools for Performing ATRP
Read More
We presents an article about Copper(I)-mediated Living Radical Polymerization in the Presence of Pyridylmethanimine Ligands, and the emergence of living radical polymerization mediated by transition metal catalysts in 1995, which was a seminal piece of work in the field of synthetic polymer chemistry.
Read More
Applying ARGET ATRP to the Growth of Polymer Brush Thin Films by Surface-initiated Polymerization
Read More
Protocols
Monodisperse, surfactant-free polymer spheres for use as colloidal crystal templates can be easily obtained in reasonably large quantities. Typical synthesis methods for poly(methyl methacrylate) (PMMA) and poly(styrene) (PS) by emulsifier free emulsion polymerization are described below and yield spheres several hundred nanometers in diameter.
Read More
Sigma-Aldrich presents an article about RAFT, or Reversible Addition/Fragmentation Chain Transfer, which is a form of living radical polymerization.
Read More
We presents an article featuring procedures that describe polymerization of methyl methacrylate and vinyl acetate homopolymers and a block copolymer as performed by researchers at CSIRO.
Read More
An article about the typical procedures for polymerizing via ATRP, which demonstrates that in the following two procedures describe two ATRP polymerization reactions as performed by Prof. Dave Hadddleton′s research group at the University of Warwick.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.