All Photos(2)

481769

Sigma-Aldrich

Gallium nitride

99.9% trace metals basis

Synonym(s):
Gallium mononitride, Gallium mononitride (GaN)
Linear Formula:
GaN
CAS Number:
Molecular Weight:
83.73
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Quality Level

assay

99.9% trace metals basis

form

powder

mp

800 °C (lit.)

SMILES string

N#[Ga]

InChI

1S/Ga.N

InChI key

JMASRVWKEDWRBT-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Gallium nitride (GaN) is a wide band gap semiconducting material, which can be used in the development of a variety of electronic devices, such as light emitting diodes (LEDs), and field effect transistors (FETs). It can also be used as a transition metal dopant for spintronics-based applications.

Packaging

10, 50 g in glass bottle

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Precautionary Statements

Hazard Classifications

Skin Sens. 1

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves

Certificate of Analysis

Certificate of Origin

Fabrizio Gaulandris et al.
Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 26(1), 3-17 (2020-01-21)
One of the biggest challenges for in situ heating transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) is the ability to measure the local temperature of the specimen accurately. Despite technological improvements in the construction of TEM/STEM heating
Gallium nitride as an electromechanical material
Rais-Zadeh M, et al.
Journal of Microelectromechanical Systems : A Joint IEEE and ASME Publication on Microstructures, Microactuators, Microsensors, and Microsystems, 23(6), 1252-1271 (2014)
Gallium nitride nanowire nanodevices
Huang Y, et al.
Nano Letters, 2(2), 101-104 (2002)
Sanjay Sankaranarayanan et al.
ACS omega, 4(12), 14772-14779 (2019-09-26)
Growth of gallium nitride nanowires on etched sapphire and GaN substrates using binary catalytic alloy were investigated by manipulating the growth time and precursor-to-substrate distance. The variations in behavior at different growth conditions were observed using X-ray diffractometer, Raman spectroscopy
High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays
Kim H, et al.
Nano Letters, 4(6), 1059-1062 (2004)

Articles

Conductive Polymers for Advanced Micro- and Nano-fabrication Processes

Conducting polymers such as polyaniline, polythiophene and polyfluorenes are now much in the spotlight for their applications in organic electronics and optoelectronics.

Lanthanide Ions as Photon Managers for Solar Cells

Spectral conversion for solar cells is an emerging concept in the field of photovoltaics, and it has the potential to increase significantly the efficiency of solar cells. Lanthanide ions are ideal candidates for spectral conversion, due to their high luminescence efficiencies and rich energy level structure that allows for great flexibility in the upconversion and downconversion of photons in a wide spectral region (NIR-VIS-UV).

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service