MilliporeSigma
All Photos(1)

Documents

637262

Sigma-Aldrich

Titanium(IV) oxide, rutile

nanopowder, <100 nm particle size, 99.5% trace metals basis

Sign Into View Organizational & Contract Pricing

Synonym(s):
Titanium dioxide
Linear Formula:
TiO2
CAS Number:
Molecular Weight:
79.87
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Quality Level

assay

99.5% trace metals basis

form

nanopowder

diam. × L

~10 nm × 40 nm

surface area

50 m2/g

particle size

<100 nm

density

4.17 g/mL at 25 °C (lit.)

bulk density

0.06‑0.10 g/mL

application(s)

battery manufacturing

SMILES string

O=[Ti]=O

InChI

1S/2O.Ti

InChI key

GWEVSGVZZGPLCZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
224227204757635057
Titanium(IV) oxide, rutile nanopowder, &lt;100&#160;nm particle size, 99.5% trace metals basis

637262

Titanium(IV) oxide, rutile

Titanium(IV) oxide, rutile powder, &lt;5&#160;&#956;m, &#8805;99.9% trace metals basis

224227

Titanium(IV) oxide, rutile

Titanium(IV) oxide, rutile &#8805;99.98% trace metals basis

204757

Titanium(IV) oxide, rutile

Titanium(IV) oxide, rutile &#60;001&#62;, (single crystal substrate), &#8805;99.9% trace metals basis, L × W × thickness 10&#160;mm × 10&#160;mm × 0.5&#160;mm

635057

Titanium(IV) oxide, rutile

form

nanopowder

form

powder

form

powder

form

(single crystal substrate), (single side polished)

particle size

<100 nm

particle size

<5 μm

particle size

-

particle size

-

density

4.17 g/mL at 25 °C (lit.)

density

4.17 g/mL at 25 °C (lit.)

density

4.17 g/mL at 25 °C (lit.)

density

4.17 g/mL at 25 °C (lit.), 4.26 g/mL at 25 °C

diam. × L

~10 nm × 40 nm

diam. × L

-

diam. × L

-

diam. × L

-

surface area

50 m2/g

surface area

-

surface area

-

surface area

-

General description

Rutile titanium(IV) oxide, also called titanium dioxide, is a fine powder with a particle size less than 100 nm. This titanium adopts the rutile crystal structure and is a white, opaque, crystalline solid with a high refractive index. It is widely used as a pigment in paints, plastics, paper, and cosmetics. Rutile titanium dioxide nanopowder has a high surface area, making it more reactive and effective in a range of applications. It is resistant to heat and chemical attack, making it suitable for use in high-temperature and corrosive environments.

Features and Benefits

Possesses improved photocatalytic activity.

Other Notes

May contain up to 5 wt. % Silicon dioxide as a surface coating.

Contains small amount of anatase.

Storage Class

13 - Non Combustible Solids

wgk_germany

nwg

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Slide 1 of 5

1 of 5

Titanium(IV) oxide contains 1% Mn as dopant, nanopowder, &lt;100&#160;nm particle size (BET), &#8805;97%

Sigma-Aldrich

677469

Titanium(IV) oxide

Titanium dioxide nanotubes, 25&#160;nm average diameter, powder

Sigma-Aldrich

799289

Titanium dioxide

Titanium(IV) oxide nanowires, diam. × L ~10&#160;nm × 10&#160;&#956;m

Sigma-Aldrich

774529

Titanium(IV) oxide

Titanium dioxide NIST&#174; SRM&#174; 1898, nanomaterial

NIST1898

Titanium dioxide

Suxin Gui et al.
Journal of agricultural and food chemistry, 61(37), 8959-8968 (2013-08-24)
TiO₂ nanoparticles (NPs) are used in the food industry but have potential toxic effects in humans and animals. TiO₂ NPs impair renal function and cause oxidative stress and renal inflammation in mice, associated with inhibition of nuclear factor erythroid-2-related factor
Susan C Tilton et al.
Nanotoxicology, 8(5), 533-548 (2013-05-11)
The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect
D Minetto et al.
Environment international, 66, 18-27 (2014-02-11)
The innovative properties of nanomaterials make them suitable for various applications in many fields. In particular, TiO2 nanoparticles (nTiO2) are widely used in paints, in cosmetics and in sunscreens that are products accessible to the mass market. Despite the great
Roberta Tassinari et al.
Nanotoxicology, 8(6), 654-662 (2013-07-10)
The study explored possible reproductive and endocrine effects of short-term (5 days) oral exposure to anatase TiO2 nanoparticles (0, 1, 2 mg/kg body weight per day) in rat. Nanoparticles were characterised by scanning electron microscopy (SEM) and transmission electron microscopy
Nabila Haddou et al.
Chemosphere, 107, 304-310 (2014-01-28)
The Gliding Arc Discharge (GAD) is an efficient non-thermal plasma technique able to degrade organic compounds dispersed in water at atmospheric pressure. The degradation of the organometallic lead acetate (PbAc) in aqueous solution was performed by two distinct plasmageneous processes:

Articles

Dye-sensitized solar cells directly convert sunlight to electricity

Over the last decade, dye-sensitized solar cells (DSSCs) have attracted much attention because these unconventional solar cells exhibit high performance and have the potential for low-cost production.

One of the more traditional photovoltaic devices, single crystalline silicon solar cells were invented more than 50 years ago, currently make up 94% of the market. Single crystalline silicon solar cells operate on the principle of p-n junctions formed by joining p-type and n-type semiconductors.

Few Monolayer Atomic Layer Deposition (ALD) on Surfaces and Interfaces for Energy Applications

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service