All Photos(1)




Gallium arsenide

(single crystal substrate), <100>, diam. × thickness 2 in. × 0.5 mm

Sign Into View Organizational & Contract Pricing

Gallium monoarsenide
Linear Formula:
CAS Number:
Molecular Weight:
EC Number:
MDL number:
PubChem Substance ID:

Quality Level


(single crystal substrate)


≥1E7 Ω-cm

diam. × thickness

2 in. × 0.5 mm


5.31 g/mL at 25 °C (lit.)

semiconductor properties


SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide

Physical properties

Mobility >=4500 cm2 · V-1 · S-1
Undoped (Si-type semiconductor), EPD < 5 × 104 cm-2, growth technique = LEC & HB

Physical form

cubic (a = 5.6533 Å)


Health hazard



Hazard Classifications

Carc. 1B - Repr. 1B - STOT RE 1

Storage Class

6.1A - Combustible, acute toxic Cat. 1 and 2 / very toxic hazardous materials




Not applicable


Not applicable

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).


Product Number
Pack Size/Quantity

Additional examples:





enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Shih-Wei Tan et al.
PloS one, 7(11), e50681-e50681 (2012-12-12)
Characterization and modeling of metal-semiconductor-metal (MSM) GaAs diodes using to evaporate SiO₂ and Pd simultaneously as a mixture electrode (called M-MSM diodes) compared with similar to evaporate Pd as the electrode (called Pd-MSM diodes) were reported. The barrier height (φ(b))
Chao-Wei Hsu et al.
Nanotechnology, 23(49), 495306-495306 (2012-11-17)
GaAs is grown by metal-organic vapor-phase epitaxy on a 55 nm round-hole patterned Si substrate with SiO(2) as a mask. The threading dislocations, which are stacked on the lowest energy facet plane, move along the SiO(2) walls, reducing the number
Yu Bomze et al.
Physical review letters, 109(2), 026801-026801 (2012-10-04)
We report on measurements of first-passage-time distributions associated with current switching in weakly coupled GaAs/AlAs superlattices driven by shot noise, a system that is both far from equilibrium and high dimensional. Static current-voltage (I-V) characteristics exhibit multiple current branches and
M Baranowski et al.
Journal of physics. Condensed matter : an Institute of Physics journal, 25(6), 065801-065801 (2013-01-12)
In this study we apply time resolved photoluminescence and contactless electroreflectance to study the carrier collection efficiency of a GaInNAsSb/GaAs quantum well (QW). We show that the enhancement of photoluminescence from GaInNAsSb quantum wells annealed at different temperatures originates not
Kazuue Fujita et al.
Optics express, 20(18), 20647-20658 (2012-10-06)
Device-performances of 3.7 THz indirect-pumping quantum-cascade lasers are demonstrated in an InGaAs/InAlAs material system grown by metal-organic vapor-phase epitaxy. The lasers show a low threshold-current-density of ~420 A/cm2 and a peak output power of ~8 mW at 7 K, no


Spintronics offer breakthroughs over conventional memory/logic devices with lower power, leakage, saturation, and complexity.


Photoresist kit offers pre-weighed chemical components for lithographic processes, with separate etchants for various substrate choices.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service