694924

Sigma-Aldrich

Tris[2-phenylpyridinato-C2,N]iridium(III)

sublimed grade

Synonym(s):
Iridium, tris[2-(2-pyridinyl-κN)phenyl-κC], Ir(ppy)3
Empirical Formula (Hill Notation):
C33H24IrN3
CAS Number:
Molecular Weight:
654.78
MDL number:
PubChem Substance ID:
NACRES:
NA.23

grade

sublimed grade

Quality Level

loss

0.5% loss on heating, 359°C (typical, TGA)

transition temp

transition temp 437.6 °C (typical, DSC)

λmax

282 nm

fluorescence

λex 305 nm; λem 507 nm in chloroform

Orbital energy

HOMO 5.6 eV 
LUMO 3 eV 

OLED Device Performance

ITO/HMPD/TAZ:Ir(ppy)3 (7%)/Alq3/Al:Li

  • Color: green
  • Max. Luminance: 4000 Cd/m2
  • Max. EQE: 15 %

ITO/NPD/CBP:Ir(ppy)3 (6%)/Alq3/Mg:Ag
  • Color: green
  • Max. Luminance: 100000 Cd/m2
  • Max. EQE: 8 %
  • Turn-On Voltage: 4.3 V

ITO/NPD/TCTA/BCPO:Ir(ppy)3 (7-8%)/BCP/Alq3/LiF/Al
  • Color: green
  • Max. Luminance: 207839 Cd/m2
  • Max. EQE: 21.6 %
  • Turn-On Voltage: 2.1 V

ITO/TCTA/Ir(ppy)3/Bphen/LiF/Al
  • Color: green
  • Max. Luminance: 300000 Cd/m2
  • Max. EQE: 19 %
  • Turn-On Voltage: 2.6 V

SMILES string

c1ccc(nc1)-c2ccccc2[Ir](c3ccccc3-c4ccccn4)c5ccccc5-c6ccccn6

InChI

1S/3C11H8N.Ir/c3*1-2-6-10(7-3-1)11-8-4-5-9-12-11;/h3*1-6,8-9H;

InChI key

QKBWDYLFYVXTGE-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

Packaging

250 mg in glass insert

Application

OLED triplet emitter (green).
TGA/DSC Lot specific traces available upon request

storage_class_code

13 - Non Combustible Solids

WGK Germany

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves

Certificate of Analysis

Certificate of Origin

High-efficiency, low-voltage phosphorescent organic light-emitting diode devices with mixed host
Kondakova, M.; Pawlik, T.; Young, R.; et al.
Journal of Applied Physics, 104, 094501-094501 (2008)
Highly efficient, single-layer organic light-emitting devices based on a graded-composition emissive layer
Holmes, R. J.; et al.
Applied Physics Letters, 97, 083308-083308 (2010)
High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials
Adachi, C.; ea al.
Applied Physics Letters, 77, 904-904 (2000)
Very high-efficiency green organic light-emitting devices based on electrophosphorescence
Forrest, S. R.; et al.
Applied Physics Letters, 75, 4-4 (1999)
A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs.
Ho-Hsiu Chou et al.
Advanced materials (Deerfield Beach, Fla.), 22(22), 2468-2471 (2010-05-07)
Articles
The soaring global demand for energy has created an urgent need for new energy sources that are both cost-competitive and eco-friendly.
Read More
Plexcore® organic conductive inks are electronic grade inks formulated for use in the hole injection layers of OLEDs.
Read More
Sublimed materials for organic electronic devices such of OFETs and OTFTs allow the achievement of better electronic properties, and may help increase a device’s lifetime.
Read More
Organic Semiconductor Laser Materials
Read More
Related Content
Organic electronics utilizes organic conductors and semiconductors for applications in organic photovoltaics, organic light-emitting diodes, and organic field-effect transistors.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service