MilliporeSigma
All Photos(1)

Documents

715166

Sigma-Aldrich

Octadecylphosphonic acid

97%

Sign Into View Organizational & Contract Pricing

Synonym(s):
n-Octadecylphosphonic acid, ODPA
Empirical Formula (Hill Notation):
C18H39O3P
CAS Number:
Molecular Weight:
334.47
MDL number:
PubChem Substance ID:
NACRES:
NA.23

assay

97%

form

crystals

mp

95-100 °C

SMILES string

CCCCCCCCCCCCCCCCCCP(O)(O)=O

InChI

1S/C18H39O3P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-22(19,20)21/h2-18H2,1H3,(H2,19,20,21)

InChI key

FTMKAMVLFVRZQX-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
735914736244675075
vibrant-m

715166

Octadecylphosphonic acid

vibrant-m

735914

Octylphosphonic acid

vibrant-m

736244

Hexadecylphosphonic acid

vibrant-m

675075

8-Mercaptooctanoic acid

form

crystals

form

solid

form

solid

form

-

mp

95-100 °C

mp

93-98 °C

mp

88-93 °C

mp

-

General description

Octadecylphosphonic acid (OPA) is used as a self-assembled monolayer that forms a surfactant which strongly bonds with the surface atoms of different metal oxides. It provides hydrophobic properties and covers a higher surface area than the predominantly used silanes.

Application

Anti-corrosive coatings on cupronickel (CuNi) can be formed by fabricating a protective film of OPA by dip coating method. OPA may be used in the preparation of indium oxide(In2O3) nanowire transistor than can find potential application in the growth of fast switching and low noise nano-electronic devices. It may be used for self-cleaning and oil/water separation based applications as it forms a superhydrophobic layer on the copper mesh.

Pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Resistance of Superhydrophobic Surface-Functionalized TiO2 Nanotubes to Corrosion and Intense Cavitation.
Hua W.
Nanomaterials, 8(10), 783-783 (2018)
Getachew Tizazu et al.
Langmuir : the ACS journal of surfaces and colloids, 25(18), 10746-10753 (2009-07-18)
Electron-hole pair formation at titania surfaces leads to the formation of reactive species that degrade organic materials. Here, we describe the degradation of self-assembled monolayers of alkylphosphonic acids on the native oxide of titanium following exposure to UV light. The
Fabrication of controllable and stable In2O3 nanowire transistors using an octadecylphosphonic acid self-assembled monolayer.
Lim T, et al.
Nanotechnology, 26(14), 145203-145203 (2015)
Deepshikha Arora et al.
ACS nano, 14(8), 10337-10345 (2020-08-19)
Branched heterostructured semiconductor nanoparticles such as core seeded tetrapods and octapods offer properties not seen in their spherical core-shell counterparts, but are challenging to synthesize with a large diversity of branch numbers via heterogeneous nucleation and growth processes alone. This
Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation.
Dai C, et al.
Soft Matter, 10(40), 8116-8121 (2014)

Articles

There is widespread demand for thin, lightweight, and flexible electronic devices such as displays, sensors, actuators, and radio-frequency identification tags (RFIDs). Flexibility is necessary for scalability, portability, and mechanical robustness.

Self-assembled monolayers (SAMs) have attracted enormous interest for a wide variety of applications in micro- and nano-technology. In this article, we compare the benefits of three different classes of SAM systems (alkylthiolates on gold).

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service