MilliporeSigma
All Photos(1)

Documents

719919

Sigma-Aldrich

Resomer® RG 752 H, Poly(D,L-lactide-co-glycolide)

acid terminated, lactide:glycolide 75:25, Mw 4,000-15,000

Sign Into View Organizational & Contract Pricing

Synonym(s):
PLGA
Linear Formula:
[C3H4O2]x[C2H2O2]y
CAS Number:
NACRES:
NA.23

Quality Level

form

(Powder or Solid or Chunk(s))

feed ratio

lactide:glycolide 75:25

mol wt

Mw 4,000-15,000

degradation timeframe

<6 months

impurities

≤0.1% Sulfated Ash (CONF0010 Conforms)

viscosity

0.14-0.22 dL/g, 0.5 % in chloroform(25 °C, Ubbelohde) (size 0c glass capillary viscometer)

transition temp

Tg 42-46 °C

storage temp.

2-8°C

InChI

1S/C6H8O4.C4H4O4/c1-3-5(7)10-4(2)6(8)9-3;5-3-1-7-4(6)2-8-3/h3-4H,1-2H3;1-2H2

InChI key

LCSKNASZPVZHEG-UHFFFAOYSA-N

Related Categories

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
719900719927739979
transition temp

Tg 42-46 °C

transition temp

Tg 46-50 °C

transition temp

Tg 49-55 °C

transition temp

-

form

(Powder or Solid or Chunk(s))

form

amorphous

form

amorphous

form

amorphous

storage temp.

2-8°C

storage temp.

2-8°C

storage temp.

2-8°C

storage temp.

2-8°C

feed ratio

lactide:glycolide 75:25

feed ratio

lactide:glycolide 50:50

feed ratio

lactide:glycolide 75:25

feed ratio

lactide:glycolide 85:15

mol wt

Mw 4,000-15,000

mol wt

Mw 38,000-54,000

mol wt

Mw 76,000-115,000

mol wt

Mw 190,000-240,000

General description

Poly(D,L-lactide-co-glycolide) (PLGA) is a biodegradable andbioabsorbable polymer that is widely used in the formulation of implantable andinjectable drug delivery systems. PLGA material induces minimal inflammatoryresponse inside the body and degrades to produce biocompatible lactic andglycolic acids.

Legal Information

Product of Evonik
RESOMER is a registered trademark of Evonik Rohm GmbH

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Rongcai Liang et al.
International journal of pharmaceutics, 454(1), 344-353 (2013-07-23)
Peptide or protein degradation often occurs when water flows into the dosage form. The aim of this study was to investigate the effect of water on exenatide acylation in poly(lactide-co-glycolide) (PLGA) microspheres. Exenatide-loaded PLGA microspheres were incubated at different relative
Teresa Musumeci et al.
International journal of pharmaceutics, 440(2), 135-140 (2012-10-20)
Melatonin, a neurohormone secreted by the pineal gland, is able to modulate intraocular pressure (IOP). The aim of this study was to generate nanoparticle (NPs) sustained release formulations that allow to extend the pre-corneal residence time of melatonin, thus prolonging
Maria Kirzhner et al.
Ophthalmology, 120(6), 1300-1304 (2013-02-13)
To compare wrapped and polymer-coated hydroxyapatite implants in children undergoing primary enucleation with no adjuvant therapies. Retrospective, interventional cohort study. All children undergoing primary enucleation without adjuvant therapies between 1999 and 2009 at a tertiary pediatric cancer hospital. Review and
Igor Jeroukhimov et al.
Journal of the American College of Surgeons, 218(1), 102-107 (2013-11-12)
Chronic pain after inguinal hernia repair occurs in 16% to 62% of patients. The underlying mechanism probably involves sensory nerve damage and abnormal healing that might be influenced by the materials chosen for the procedure. We hypothesize that nonabsorbable sutures
Daniel R Getts et al.
Nature biotechnology, 30(12), 1217-1224 (2012-11-20)
Aberrant T-cell activation underlies many autoimmune disorders, yet most attempts to induce T-cell tolerance have failed. Building on previous strategies for tolerance induction that exploited natural mechanisms for clearing apoptotic debris, we show that antigen-decorated microparticles (500-nm diameter) induce long-term

Articles

Interest in utilizing biodegradable polymers for biomedical applications has grown since the 1960s.

The world of commercial biomaterials has stagnated over the past 30 years as few materials have successfully transitioned from the bench to clinical use. Synthetic aliphatic polyesters have continued to dominate the field of resorbable biomaterials due to their long history and track record of approval with the U.S. Food and Drug Administration (FDA).

Aliphatic polyesters such as polylactide, poly(lactide-co-glycolide) and polycaprolactone, as well as their copolymers, represent a diverse family of synthetic biodegradable polymers that have been widely explored for medical uses and are commercially available.

Immunosuppressive tumor-associated myeloid cells (TAMC) are responsible for glioblastoma (GBM) resistance to immunotherapies and existing standard of care treatments. This mini-review highlights recent progress in implementing nanotechnology in advancing TAMC-targeted therapies for GBM.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service