MilliporeSigma
All Photos(1)

Documents

791989

Sigma-Aldrich

PDPP2T-TT-OD

Sign Into View Organizational & Contract Pricing

Synonym(s):
Diketopyrrolopyrrole - thienothiophene copolymer, Diketopyrrolopyrrole p-type semiconductor, Xerox XSC4p
Linear Formula:
(C60H90N2O2S4)n
CAS Number:
NACRES:
NA.23

form

solid

mol wt

average Mw 40,000-60,000 by GPC

color

dark blue

mp

>200 °C

λmax

820 nm (thin film)

orbital energy

HOMO 5.2 eV 

OFET device performance

Bottom gate top contact device with silane modified SiO2 dielectric.Processing method spin coating; thermal annealing at 140 °C/ 10 min

  • Semiconductor Type:
  • Mobility: 0.60 cm2/V·s
  • On/Off Ratio: 10^6 - 10^7

PDI

2.5‑3.0

Related Categories

General description

PDPP2T-TT-OD is thiophene based conducting polymer with diketopyrrolo-pyrrole (DPP) as the electron deficient group and octyldodecyl acting as a pendant attachment. Its structure has a DPP-thiophene and a variable bithiophene (2T). It has a high charge carrying mobility that makes it useful in the development of organic electronics based devices.

Application

PDPP2T-TT-OD can be used as a π-conjugating polymer that can be used in the fabrication of a variety of devices such as organic thin film transistors (OTFTs), photovoltaic cells, polymeric solar cells and field effect transistors (FETs).
Xerox demonstrated device performance on a n-doped silicon wafer with 100 - 300 nm native SiO2 dielectric modified with an octadecyltrichlorosilane self-assembled
monolayer. An XSC4p film was deposited by spin-coating a 0.5 – 0.7 wt. % polymer solution at 1000 rpm for 60 sec. The film was dried in a vacuum oven for 10 min at 80
°C and then thermally annealed at 140 °C for 10 min. Gold source-drain electrodes were deposited by vacuum evaporation using a shadow mask (90 micrometer channels).
The electrical performance was characterized using a Keithley SCS-4200 system. The reported mobility is the average saturated mobility of four devicεs ± the standard
deviation.

Legal Information

Product of Xerox®. Xerox® is a registered trademark of Xerox Corporation.
Xerox is a registered trademark of Xerox Corporation

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Molecular packing of high-mobility diketo pyrrolo-pyrrole polymer semiconductors with branched alkyl side chains
Zhang X, et al.
Journal of the American Chemical Society, 133(38), 15073-15084 (2011)
Weiwei Li et al.
Advanced materials (Deerfield Beach, Fla.), 25(23), 3182-3186 (2013-03-07)
A high-molecular-weight conjugated polymer based on alternating electron-rich and electron-deficient fused ring systems provides efficient polymer solar cells when blended with C60 and C70 fullerene derivatives. The morphology of the new polymer/fullerene blend reduces bimolecular recombination and allows reaching high
Universal correlation between fibril width and quantum efficiency in diketopyrrolopyrrole-based polymer solar cells
Li W, et al.
Journal of the American Chemical Society, 135(50), 18942-18948 (2013)
Xinran Zhang et al.
Journal of the American Chemical Society, 133(38), 15073-15084 (2011-08-06)
We describe a series of highly soluble diketo pyrrolo-pyrrole (DPP)-bithiophene copolymers exhibiting field effect hole mobilities up to 0.74 cm(2) V(-1) s(-1), with a common synthetic motif of bulky 2-octyldodecyl side groups on the conjugated backbone. Spectroscopy, diffraction, and microscopy
Copolymers of diketopyrrolopyrrole and thienothiophene for photovoltaic cells
Bijleveld JC, et al.
Journal of Materials Chemistry, 21(25), 9224-9231 (2011)

Articles

The development of high-performance conjugated organic molecules and polymers has received widespread attention in industrial and academic research.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service