Mattson Boronate Urea Pinacol Ester

greener alternative
Empirical Formula (Hill Notation):
CAS Number:
Molecular Weight:
MDL number:
PubChem Substance ID:



Quality Level

reaction suitability

reagent type: catalyst

greener alternative product characteristics

Learn more about the Principles of Green Chemistry.


230.39 °C

greener alternative category


storage temp.


SMILES string




InChI key


Related Categories

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for catalytic efficiency. Click here for more information.


1-(3,5-bis(trifluoromethyl)phenyl)-3-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)urea is a user-friendly, bench stable white solid. When compared to conventional ureas, this urea is moderately acidic (pKa(DMSO) = 9.5) and benefits from improved catalytic abilities and stability in select reactions.


250 mg in glass bottle


NONH for all modes of transport

WGK Germany


Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis

Certificate of Origin

Tyler J Auvil et al.
Angewandte Chemie (International ed. in English), 52(43), 11317-11320 (2013-09-17)
It takes two: A unique organocatalyzed cascade for the unsymmetric double arylation of α-nitrodiazoesters is described. This organocascade features the strategic use of carbene-activating anilines in conjunction with a urea catalyst, thus allowing for the synthesis of pharmaceutically attractive α-diarylesters...
Sonia S So et al.
Organic letters, 14(2), 444-447 (2012-01-03)
Boronate ureas operate as catalysts for the activation of nitrocyclopropane carboxylates in nucleophilic ring-opening reactions. A variety of amines were found to open the urea-activated nitrocyclopropane carboxylates, generating highly useful nitro ester building blocks in good yields. Standard manipulations allow...
David M Nickerson et al.
Chemical communications (Cambridge, England), 49(39), 4289-4291 (2012-12-01)
The strategic incorporation of internal Lewis acids onto urea scaffolds gives rise to a family of tunable hydrogen bond donor catalysts. The nature of the Lewis acid and associated ligands affects the urea polarization, acidity, and activity in reactions of...
Andrea M Hardman et al.
Organic & biomolecular chemistry, 11(35), 5793-5797 (2013-08-03)
Highly functionalized oxazinanes are efficiently prepared through urea-catalyzed formal [3 + 3] cycloaddition reactions of nitrones and nitrocyclopropane carboxylates. The reaction system is general with respect to both the nitrocyclopropane carboxylates and nitrones enabling the preparation of a large family...
Sonia S So et al.
Organic letters, 13(4), 716-719 (2011-01-14)
Boronate ureas are introduced as a new class of noncovalent catalysts for conjugate addition reactions with enhanced activity. Through intramolecular coordination of the urea functionality to a strategically placed Lewis acid, rate enhancements up to 10 times that of more...
Related Content
Boronate ureas benefit from internal Lewis acid coordination of the urea cabonyl oxygen and the strategically placed boron. As a result of this structural feature, boronate ureas can be rendered more acidic than conventional urea hydrogen bond donor catalysts.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.