MilliporeSigma
All Photos(2)

Documents

901235

Sigma-Aldrich

TBS-DHG Catalyst

greener alternative

≥95%

Synonym(s):
(2R,3S,4R)-2-(((tert-Butyldimethylsilyl)oxy)methyl)tetrahydro-2H-pyran-3,4-diol, 6-Tertbutyldimethylsilyl-1,2-dihydroglucal
Empirical Formula (Hill Notation):
C12H26O4Si
CAS Number:
Molecular Weight:
262.42

Quality Level

Assay

≥95%

form

powder or crystals

reaction suitability

reagent type: catalyst

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

greener alternative category

storage temp.

−20°C

SMILES string

[H]C1([H])C([H])([H])O[C@@](C([H])([H])O[Si](C([H])([H])[H])(C([H])([H])[H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H])([H])[C@](O[H])([H])[C@]1([H])O[H]

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
803863905534403237
TBS-DHG Catalyst ≥95%

Sigma-Aldrich

901235

TBS-DHG Catalyst

form

powder or crystals

form

powder or crystals

form

powder or crystals

form

solid

storage temp.

−20°C

storage temp.

-

storage temp.

2-8°C

storage temp.

-

Quality Level

100

Quality Level

100

Quality Level

-

Quality Level

100

reaction suitability

reagent type: catalyst

reaction suitability

reagent type: catalyst

reaction suitability

reagent type: catalyst

reaction suitability

-

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

greener alternative product characteristics

-

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for catalytic efficiency. Click here for more information.

Application

6-Tertbutyldimethylsilyl-1,2-dihydroglucal (TBS-DHG) was reported by the Morken Lab to be an effective carbohydrate-derived catalyst for enantioselective diboration of alkenes. Related capabilities were observed with the dihydrorhamnal (DHR) catalyst (901237). TBS-DHG has also been used in ruthenium(0)catalyzed transfer hydrogenation cycloadditions.

related product

Product No.
Description
Pricing

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (Example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Hiroki Sato et al.
Journal of the American Chemical Society, 138(50), 16244-16247 (2016-12-10)
The first use of vicinal diols, ketols, or diones as 2
Zachary A Kasun et al.
Chemical communications (Cambridge, England), 50(56), 7545-7547 (2014-06-04)
A new method for the ring expansion of cyclic diols is described. Using improved conditions for the ruthenium(0) catalyzed cycloaddition of cyclic 1,2-diols with 1,3-dienes, fused [n.4.0] bicycles (n = 3-6) are formed, which upon exposure to iodosobenzene diacetate engage
Lichao Fang et al.
Journal of the American Chemical Society, 138(8), 2508-2511 (2016-02-09)
Catalytic enantioselective diboration of alkenes is accomplished with readily available carbohydrate-derived catalysts. Mechanistic experiments suggest the intermediacy of 1,2-bonded diboronates.
Lu Yan et al.
Journal of the American Chemical Society, 140(10), 3663-3673 (2018-02-15)
A mechanistic investigation of the carbohydrate/DBU cocatalyzed enantioselective diboration of alkenes is presented. These studies provide an understanding of the origin of stereoselectivity and also reveal a strategy for enhancing reactivity and broadening the substrate scope.

Related Content

Morken Group – Professor Product Portal

Chiral organoboronic esters are well known as versatile intermediates for chemical synthesis. Not only are these compounds stable under a variety of reaction conditions, they are generally non-toxic and can be transformed with minimal generation of hazardous waste.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service