901423

Sigma-Aldrich

ITIC-F

Synonym(s):
9-Bis(2-methylene-((3-(1,1-dicyanomethylene)-6,7-difluoro)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene, IT-4F, ITIC-2F, ITIC-DF3
Empirical Formula (Hill Notation):
C94H78F4N4O2S4
CAS Number:
Molecular Weight:
1499.90
NACRES:
NA.23

description

Band gap: 1.52 eV

Quality Level

assay

97%

form

solid

Orbital energy

HOMO -5.66 eV 
LUMO -4.14 eV 

Inchi Code

1S/C94H78F4N4O2S4/c1-5-9-13-17-21-55-25-33-61(34-26-55)93(62-35-27-56(28-36-62)22-18-14-10-6-2)75-45-72-76(46-71(75)89-85(93)91-81(107-89)43-65(105-91)41-73-83(59(51-99)52-100)67-47-77(95)79(97)49-69(67)87(73)103)94(63-37-29-57(30-38-63)23-19-15-11-7-3,64-39-31-58(32-40-64)24-20-16-12-8-4)86-90(72)108-82-44-66(106-92(82)86)42-74-84(60(53-101)54-102)68-48-78(96)80(98)50-70(68)88(74)104/h25-50H,5-24H2,1-4H3/b73-41-,74-42-

InChI key

JOZQXSUYCMNTCH-ODDCUFEPSA-N

Related Categories

Application

ITIC-F is a non-fullerene acceptor molecule, which can be used in the fabrication of organic solar cells (OSCs) and organic photovoltaics (OPVs).
ITIC-F is a derivative of ITIC possessing lower energy levels and a broader absorption spectrum. It is used as an n-type molecule for organic photovoltaics, allowing very high performances of over 13%.

RIDADR

NONH for all modes of transport

WGK Germany

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis

Certificate of Origin

Performance limitations in thieno [3, 4-c] pyrrole-4, 6-dione-based polymer: ITIC solar cells
Yang F, et al.
Physical Chemistry Chemical Physics, 19(35), 23990-23998 (2017)
Efficient Non-Fullerene Organic Photovoltaic Modules Incorporating As-Cast and Thickness-Insensitive Photoactive Layers
Zhang T, et al.
Advanced Energy Materials, 8(25), 1801387-1801387 (2018)
Wenchao Zhao et al.
Journal of the American Chemical Society, 139(21), 7148-7151 (2017-05-18)
A new polymer donor (PBDB-T-SF) and a new small molecule acceptor (IT-4F) for fullerene-free organic solar cells (OSCs) were designed and synthesized. The influences of fluorination on the absorption spectra, molecular energy levels, and charge mobilities of the donor and...
Highly efficient inverted ternary organic solar cells with polymer fullerene-free acceptor as a third component material
Zhang K, et al.
Journal of Power Sources, 413(35), 391-398 (2019)
Articles
The emerging organic photovoltaic (OPV) technology is very promising for low-cost solar energy production. OPV devices can be produced using high-throughput, large-volume printing methods on lightweight and flexible plastic substrates, making them easy to deploy and use in innovative ways.
Read More
The emerging organic photovoltaic (OPV) technology is very promising for low-cost solar energy production.
Read More
Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.