906824

Sigma-Aldrich

BT-CIC

≥98%

Synonym(s):
NFA147, PCE147, 4,4,10,10-tetrakis(4-hexylphenyl)-5,11-(2-ethylhexyloxy)-4,10-dihydrodithienyl[1,2-b:4,5b′ ]benzodithiophene-2,8-diyl)bis(2-(3-oxo-2,3-dihydroinden-5,6-dichloro-1-ylidene)malononitrile)
Empirical Formula (Hill Notation):
C110H110Cl4N4O4S4
CAS Number:
Molecular Weight:
1822.15

description

Band gap: 1.4 eV
Solubility:CB and ODCB

assay

≥98%

form

solid

solubility

chloroform: soluble

Orbital energy

HOMO -5.5 eV 
LUMO -4.1 eV 

Inchi Code

1S/C110H110Cl4N4O4S4/c1-9-17-23-27-33-69-37-45-75(46-38-69)109(76-47-39-70(40-48-76)34-28-24-18-10-2)87-55-79(53-85-93(73(61-115)62-116)81-57-89(111)91(113)59-83(81)99(85)119)123-103(87)107-97(109)95-101(121-65-67(15-7)31-21-13-5)106-96(102(105(95)125-107)122-66-68(16-8)32-22-14-6)98-108(126-106)104-88(56-80(124-104)54-86-94(74(63-117)64-118)82-58-90(112)92(114)60-84(82)100(86)120)110(98,77-49-41-71(42-50-77)35-29-25-19-11-3)78-51-43-72(44-52-78)36-30-26-20-12-4/h37-60,67-68H,9-36,65-66H2,1-8H3/b85-53-,86-54+

InChI key

QKGHNUQLBFDZDZ-ROMINNPJSA-N

Related Categories

Application

BT-CIC is a highly efficient, ultra-narrow bandgap, NIR absorbing, non-fullerene acceptor, designed to use in high performance organic photovoltaic devices.
A recently reported tandem cell, employing BT-CIC as the non-fullerene acceptor and PCE-10 as donor for the back cell showed an PCE of 15%.

Device performance:
Tandem [Front] (170 nm DTDCPB:C70 + ARC) [Back]PCE-10:BTCIC (1:1.5, 75 nm)
Jsc=13.3 ± 0.3 mA/cm2
Voc=1.59 ± 0.01 V
FF=0.71± 0.01
PCE=15.0% ± 0.3%
ARC:an antireflection coating

WGK Germany

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis

Certificate of Origin

High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells.
Yongxi L, et al.
Journal of the American Chemical Society, 139(47), 17114-17119 (2017)
High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency.
Xiaozhou C, et al.
Nature Energy, 3(5), 422-427 (2018)
Articles
The emerging organic photovoltaic (OPV) technology is very promising for low-cost solar energy production. OPV devices can be produced using high-throughput, large-volume printing methods on lightweight and flexible plastic substrates, making them easy to deploy and use in innovative ways.
Read More
The emerging organic photovoltaic (OPV) technology is very promising for low-cost solar energy production.
Read More
Professor Chen (Nankai University, China) and his team explain the strategies behind their recent record-breaking organic solar cells, reaching a power conversion efficiency of 17.3%.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.