MilliporeSigma
All Photos(2)

Documents

911135

Sigma-Aldrich

TU-3

Sign Into View Organizational & Contract Pricing

Synonym(s):
4,4′-(2λ4δ2-benzo[1,2-c:4,5-c′]bis[1,2,5]thiadiazole-4,8-diyldi-5,2-thiophenediyl)bis[2-dodecylbenzonitrile], 4,8-Bis [5-(4-cyano-3-alkylphenyl)-2-thienyl] benzo[1,2-c:4,5-c′] bis [1,2,5] thiadiazole
Empirical Formula (Hill Notation):
C52H60N6S4
CAS Number:
Molecular Weight:
897.33

description

Decomposition temperature: 371 °C (Decomposition start temperature)
mobility = 2.3 cm2 / Vs (@Vsd=100V)
on / off ratio = 107
Structure: BG-TC @ SiO2 / Si
electrode: Au
film: TU-3 / CHCl3 spin coat

Assay

≥99% (HPLC)

form

powder

mol wt

897.33 g/mol

color

dark green

mp

291 °C

storage temp.

2-8°C

Related Categories

Application

TU-3 is a n-type organic semiconductor material with long term (year-long) stability in air. And it can be deposited from its solutions to form felxible integrated circuits in either 2D or 3D configurations.
This material achieves a high electron mobility of 2.3 cm2/Vs or more in transistors, making it highly suitable for this application. The mobility of amorphous silicon used in general LCDs and other applications is about 0.5-1cm2/Vs.

Legal Information

Organic thin film transistor containing benzobis(thiadiazole) derivatives for organic electronic device by Tanaka, Yasuhiro; Kakita, Kazunari; Machida, Toshikazu From Jpn. Kokai Tokkyo Koho (2017), JP 2017079319 A 20170427.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Compact Organic Complementary D-Type Flip-Flop Circuits Fabricated with Inkjet Printing
Kazuma H, et al
Advanced Electronic Materials, 3(9), 1700208-1700208 (2019)
Yasunori Takeda et al.
Scientific reports, 6, 25714-25714 (2016-05-10)
Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types
Organic Complementary Inverter Circuits Fabricated with Reverse Offset Printing
Takeda Y, et al.
Advanced Electronic Materials, 4(1), 1700313-1700313 (2018)
A Unique Solution-Processable n-Type Semiconductor Material Design for High-Performance Organic Field-Effect Transistors
Mamada, et al.
Chemistry of Materials, 27, 141-141 (2015)
Jimin Kwon et al.
Nature communications, 10(1), 54-54 (2019-01-04)
Direct printing of thin-film transistors has enormous potential for ubiquitous and lightweight wearable electronic applications. However, advances in printed integrated circuits remain very rare. Here we present a three-dimensional (3D) integration approach to achieve technology scaling in printed transistor density

Articles

Professor Tokito and Professor Takeda share their new materials, device architecture design principles, and performance optimization protocols for printed and solution-processed, low-cost, highly flexible, organic electronic devices.

Related Content

Organic electronics utilizes organic conductors and semiconductors for applications in organic photovoltaics, organic light-emitting diodes, and organic field-effect transistors.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service