MilliporeSigma
All Photos(1)

Documents

913804

Sigma-Aldrich

Tin(II) iodide

AnhydroBeads, 99.99% trace metals basis, (Perovskite grade)

Sign Into View Organizational & Contract Pricing

Synonym(s):
Stannous iodide, Tin diiodide
Linear Formula:
SnI2
CAS Number:
Molecular Weight:
372.52
MDL number:

product line

AnhydroBeads

Quality Level

assay

99.99% trace metals basis

form

powder

particle size

-10 mesh

bp

714 °C (lit.)

mp

320 °C (lit.)

density

5.28 g/mL at 25 °C (lit.)

SMILES string

I[SnH2]I

InChI

1S/2HI.Sn/h2*1H;/q;;+2/p-2

InChI key

JTDNNCYXCFHBGG-UHFFFAOYSA-L

Looking for similar products? Visit Product Comparison Guide

Related Categories

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
466352409294518174
vibrant-m

913804

Tin(II) iodide

vibrant-m

466352

Tin(II) iodide

vibrant-m

409294

Tin(IV) iodide

vibrant-m

518174

Tin(II) oxide

assay

99.99% trace metals basis

assay

99.999% trace metals basis

assay

99.999% trace metals basis

assay

99.99% trace metals basis

Quality Level

100

Quality Level

100

Quality Level

100

Quality Level

100

mp

320 °C (lit.)

mp

320 °C (lit.)

mp

-

mp

-

density

5.28 g/mL at 25 °C (lit.)

density

5.28 g/mL at 25 °C (lit.)

density

4.47 g/mL at 25 °C (lit.)

density

-

product line

AnhydroBeads

product line

-

product line

-

product line

-

Application

Tin iodide finds application in synthesis of perovskites based photovoltaic materials. Our perovskite grade SnI2 can readily be dissolved in DMF to yield 1M solution.
Tin(II) iodide can serve as a starting material or precursor for tin-based perovskite absorber layers in perovskite solar cells. Tin(II) iodide perovskite-based structures can be employed in sensitizers, photodetectors, and sensors due to their tunable bandgap, high absorption coefficient, and efficient charge carrier transport. These properties make them suitable for applications in light sensing and detection. Tin(II) iodide perovskite structures show promise as materials for energy harvesting and conversion.

Packaging

Packed in ampules

Legal Information

AnhydroBeads is a trademark of Sigma-Aldrich Co. LLC

signalword

Danger

Hazard Classifications

Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Eye Dam. 1 - Met. Corr. 1 - Skin Corr. 1B - Skin Sens. 1 - STOT RE 2 - STOT SE 3

target_organs

Respiratory system

Storage Class

8A - Combustible, corrosive hazardous materials

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties
Stoumpos C C, et al.
Inorganic Chemistry, 52(15), 9019-9038 (2013)
Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells.
Chen K, et al.
Nano Energy, 49, 411-418 (2018)

Articles

To achieve net-zero emissions by 2050, renewable power contributions must triple. Photovoltaic stations provide vital utility power, achieved primarily through third- and fourth-generation technology. Promising trends include recycling and revolutionary, ultra-lightweight, flexible, and printable solar cells.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service