Skip to Content
MilliporeSigma
All Photos(1)

Documents

82059

Supelco

2-Methyl-1-propanol

analytical standard

Sign Into View Organizational & Contract Pricing

Synonym(s):
Isobutanol, Isobutyl alcohol
Linear Formula:
(CH3)2CHCH2OH
CAS Number:
Molecular Weight:
74.12
Beilstein/REAXYS Number:
1730878
EC Number:
MDL number:
UNSPSC Code:
41116107
PubChem Substance ID:
NACRES:
NA.24

grade

analytical standard

Quality Level

vapor density

2.55 (vs air)

vapor pressure

8 mmHg ( 20 °C)
8.8 mmHg ( 0 °C)

assay

≥99.8% (GC)

autoignition temp.

801 °F

shelf life

limited shelf life, expiry date on the label

expl. lim.

10.6 %

technique(s)

HPLC: suitable
gas chromatography (GC): suitable

refractive index

n20/D 1.396 (lit.)
n20/D 1.396

bp

108 °C (lit.)

mp

−108 °C (lit.)

density

0.803 g/mL at 25 °C (lit.)

application(s)

cleaning products
cosmetics
environmental
flavors and fragrances
food and beverages
personal care

format

neat

SMILES string

CC(C)CO

InChI

1S/C4H10O/c1-4(2)3-5/h4-5H,3H2,1-2H3

InChI key

ZXEKIIBDNHEJCQ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

2-Methyl-1-propanol can be obtained via hydroformylation of alkenes with fuel gas mixture in particular, carbon monoxide being the main reactant.
2-Methyl-1-propanol is a potential biofuel, which can be obtained as a major product in the yeast, Saccharomyces cerevisiae using glycine as a substrate through the glycine degradation pathway. It can also be obtained from the disaccharide, cellobionic acid (CBA) in Escherichia coli, via the ascB gene, which is primarily responsible for the CBA metabolism in E.coli.

Application

2-Methyl-1-propanol may be used as an analytical reference standard for the quantification of the analyte in environmental samples using gas chromatography-optical fiber (GC-OF) technique and the obtained analytical results were compared with gas chromatography-flame ionization detector (GC-FID) technique. It may also be used as an analytical reference standard for the quantification of the analyte as decomposition products of alkyl nitrites in biological fluids using capillary gas chromatography (GC) with cryogenic oven trapping.
Refer to the product′s Certificate of Analysis for more information on a suitable instrument technique. Contact Technical Service for further support.

signalword

Danger

Hazard Classifications

Eye Dam. 1 - Flam. Liq. 3 - Skin Irrit. 2 - STOT SE 3

target_organs

Central nervous system, Respiratory system

wgk_germany

WGK 1

flash_point_f

82.4 °F

flash_point_c

28 °C

ppe

Eyeshields, Faceshields, Gloves, type ABEK (EN14387) respirator filter


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 7

1 of 7

3-Methylbutanol analytical standard

Supelco

59092

3-Methylbutanol

1-Propanol analytical standard

Supelco

96566

1-Propanol

1-Butanol analytical standard

Supelco

19422

1-Butanol

2-Methyl-1-propanol ACS reagent, ≥99.0%

Sigma-Aldrich

320048

2-Methyl-1-propanol

2-Butanol analytical standard

Supelco

96870

2-Butanol

Ethyl acetate analytical standard

Supelco

58958

Ethyl acetate

Ethyl hexanoate analytical standard

Supelco

08375

Ethyl hexanoate

A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae
Branduardi P, et al.
Biotechnology for Biofuels, 6(1), 68-68 (2013)
SPR Catalysis V26 (2014)
Sensitive analysis of alkyl alcohols as decomposition products of alkyl nitrites in human whole blood and urine by headspace capillary GC with cryogenic oven trapping
Watanabe-Suzuki K, et al.
Journal of Chromatographic Science, 41(2), 63-66 (2003)
Comparison of a gas chromatography-optical fibre (GC-OF) detector with a gas chromatography-flame ionization detector (GC-FID) for determination of alcoholic compounds in industrial atmospheres
Silva BIL, et al.
Talanta, 76(2), 395-399 (2008)
Isobutanol production from cellobionic acid in Escherichia coli
Desai HS, et al.
Microbial cell factories, 14(1), 52-52 (2015)

Articles

The Utility of Headspace Grade Solvents for the Analysis of Organic Volatile Impurities

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service