Skip to Content
MilliporeSigma
All Photos(1)

Documents

96566

Supelco

1-Propanol

analytical standard

Synonym(s):

Propyl alcohol

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3CH2CH2OH
CAS Number:
Molecular Weight:
60.10
Beilstein/REAXYS Number:
1098242
EC Number:
MDL number:
UNSPSC Code:
41116107
PubChem Substance ID:
NACRES:
NA.24

grade

analytical standard

Quality Level

vapor density

2.1 (vs air)

vapor pressure

10 mmHg ( 147 °C)
14.9 mmHg ( 20 °C)

assay

≥99.9% (GC)

autoignition temp.

700 °F

shelf life

limited shelf life, expiry date on the label

expl. lim.

13.7 %

technique(s)

HPLC: suitable
gas chromatography (GC): suitable

refractive index

n20/D 1.384 (lit.)
n20/D 1.385

bp

97 °C (lit.)

mp

−127 °C (lit.)

density

0.804 g/mL at 25 °C (lit.)

application(s)

cleaning products
cosmetics
environmental
flavors and fragrances
food and beverages
personal care

format

neat

SMILES string

CCCO

InChI

1S/C3H8O/c1-2-3-4/h4H,2-3H2,1H3

InChI key

BDERNNFJNOPAEC-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

1-Propanol is a volatile compound with a characteristic flavor, commonly found in alcoholic and fruit beverages.
This substance is listed on the positive list of the EU regulation 10/2011 for plastics intended to come into contact with food. Find all available reference materials for compounds listed in 10/2011 here

Application

The analytical standard can also be used as follows:

  • Determination of acetaldehyde, methanol, and higher alcohols in different liquor samples by headspace gas chromatography (HS-GC) method coupled with flame ionization detector (FID)
  • Identification of major odorants in chixiang aroma-type liquor using gas chromatography-olfactometry and further determination of the alcoholic odorants by GC-FID
  • Analysis of 56 illegal alcohol samples to detect the presence of methanol and its derivatives gas chromatography-mass spectrometry (GC-MS)
  • Detection and quantification of volatile organic compounds (VOCs) in 75 liquor samples by gas chromatography combined with mass spectrometry (GC-MS)
  • Qualitative and quantitative analysis of 10 volatile organic compounds from different chemical classes in potable whey-based spirits during different stages of distillation

Other Notes

Refer to the product′s Certificate of Analysis for more information on a suitable instrument technique. Contact Technical Service for further support.

signalword

Danger

Hazard Classifications

Eye Dam. 1 - Flam. Liq. 2 - STOT SE 3

target_organs

Central nervous system

wgk_germany

WGK 1

flash_point_f

71.6 °F

flash_point_c

22 °C

ppe

Eyeshields, Faceshields, Gloves, type ABEK (EN14387) respirator filter


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 5

1 of 5

1-Propanol natural, ≥98%, FG

Sigma-Aldrich

W292826

1-Propanol

1-Propanol ACS reagent, ≥99.5%

Sigma-Aldrich

402893

1-Propanol

2-Methyl-1-propanol analytical standard

Supelco

82059

2-Methyl-1-propanol

1-Pentanol analytical standard

Supelco

77597

1-Pentanol

2-Butanol analytical standard

Supelco

96870

2-Butanol

Multi-method analysis of matured distilled alcoholic beverages for brand identification
Lehtonen JP, et al.
European Food Research and Technology, 208(5-6), 413-417 (1999)
Headspace solid-phase microextraction gas chromatography?mass spectrometry determination of volatile compounds in different varieties of African star apple fruit (Chrysophillum albidum).
Lasekan O, et al.
Food Chemistry, 141(3), 2089-2097 (2013)
C R Shen et al.
Metabolic engineering, 10(6), 312-320 (2008-09-09)
Production of higher alcohols via the keto-acid intermediates found in microorganism's native amino-acid pathways has recently shown promising results. In this work, an Escherichia coli strain that produces 1-butanol and 1-propanol from glucose was constructed. The strain first converts glucose
David Fernandez Rivas et al.
Ultrasonics sonochemistry, 19(6), 1252-1259 (2012-05-23)
Micromachined pits on a substrate can be used to nucleate and stabilize microbubbles in a liquid exposed to an ultrasonic field. Under suitable conditions, the collapse of these bubbles can result in light emission (sonoluminescence, SL). Hydroxyl radicals (OH()) generated
Dieuwke Sevenster et al.
Science (New York, N.Y.), 339(6121), 830-833 (2013-02-16)
Although reconsolidation opens up new avenues to erase excessive fear memory, subtle boundary conditions put constraints on retrieval-induced plasticity. Reconsolidation may only take place when memory reactivation involves an experience that engages new learning (prediction error). Thus far, it has

Articles

Learn about analyzing organic volatile impurities (OVIs) in pharmaceuticals using SH-GC, focusing on suitable solvents and ensuring compliance.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service