Skip to Content
MilliporeSigma
All Photos(3)

Key Documents

STS0213

Sigma-Aldrich

ECO BRIJ® O10

greener alternative

Synonym(s):

Brij® O10, Brij 97, C18-1E10, Polyoxyethylene (10) oleyl ether

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
C18H35(OCH2CH2)nOH, n~10
CAS Number:
MDL number:
UNSPSC Code:
12165104
NACRES:
NA.28

description

non-ionic

Quality Level

form

semisolid

mol wt

~709 g/mol

greener alternative product characteristics

Use of Renewable Feedstocks
Design for Degradation
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

impurities

≤3.0% water

mp

25 °F

acid number

≤1.0 mg KOH/g

hydroxyl value

75‑95 mg KOH/g

solubility

water: 100 mg/mL, clear, colorless to faintly yellow

density

1 g/mL at 25 °C (lit.)

HLB

12.4

greener alternative category

InChI

1S/C20H40O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-19-22-20-18-21/h9-10,21H,2-8,11-20H2,1H3/b10-9-

InChI key

KWVPFECTOKLOBL-KTKRTIGZSA-N

Looking for similar products? Visit Product Comparison Guide

General description

ECO Brij® O10, also known as oleyl alcohol polyoxyethylene ether, is a bio-based, high HLB nonionic surfactant manufactured from naturally occurring straight-chain oleyl alcohol. This detergent, derived from natural sources, provides various functional advantages, such as detergency, emulsification, and wetting, making it suitable for a range of applications in biochemical and biological research.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Green Chemistry. This product is a biobased surfactant and is aligned with the 7th principle of Green Chemistry "Use of Renewable Feedstocks" and the 10th principle "Design for Degradation".

Application

Brij® O10 has been used in a study to assess the aqueous surfactant two-phase systems for the continuous countercurrent cloud point extraction.

Features and Benefits

  • 100 % Renewable
  • 100 % Bio-based
  • Certified to the USDA BioPreferred Program
  • Lower carbon footprint than petrochemical-based versions
  • High-purity chemical suitable for a wide variety of research applications

Physical properties

The ECO Brij series of ethoxylated fatty alcohols are non-ionic surfactants manufactured using renewable sources. ECO Brij O10 is a mixture of decaethylene glycol alkenyl ethers, primarily oleyl (C18:1) ether. The fatty alcohol ether profile of ECO Brij O10 may differ lot-to-lot due to natural variability in the lipid starting material (palm oil).

Other Notes

For additional information on our range of Biochemicals, please complete this form.

Legal Information

Brij is a registered trademark of Croda International PLC
ECO BRIJ is a registered trademark of Croda Inc.

pictograms

Exclamation markEnvironment

signalword

Warning

hcodes

Hazard Classifications

Aquatic Chronic 2 - Skin Irrit. 2

Storage Class

11 - Combustible Solids

wgk_germany

WGK 1

flash_point_f

>464.0 °F - Equilibrium method

flash_point_c

> 240 °C - Equilibrium method


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Aqueous Surfactant Two-Phase Systems for the Continuous Countercurrent Cloud Point Extraction
Ingram, T., et al.
Chemie Ingenieur Technik, 84, 840-840 (2012)
R B Shah et al.
International journal of pharmaceutics, 341(1-2), 189-194 (2007-05-25)
In the present work, a novel application of ultrasonic measurements is detailed to characterize nano-emulsion formulations as a part of the overall Quality by Design (QbD) goal. Ultrasonic resonator technology (URT) was utilized to measure sound velocity and absorption of
Myriam Chentouf et al.
Journal of immunology (Baltimore, Md. : 1950), 179(1), 409-420 (2007-06-21)
The biological effects of rIgG(1) 13B8.2, directed against the CDR3-like loop on the D1 domain of CD4, are partly due to signals that prevent NF-kappaB nuclear translocation, but the precise mechanisms of action, particularly at the level of membrane proximal
Carles Gil et al.
Biochemical and biophysical research communications, 348(4), 1334-1342 (2006-08-22)
Although the high presence of cholesterol in nerve terminals is well documented, specific roles of this lipid in transmitter release have remained elusive. Since cholesterol is a highly enriched component in the membrane microdomains known as lipid rafts, it is
Yash Kapoor et al.
Journal of colloid and interface science, 322(2), 624-633 (2008-03-25)
Surfactants are commonly incorporated into hydrogels to increase solute loading and attenuate the release rates. In this paper we focus on understanding and modeling the mechanisms of both surfactant and drug transport in hydrogels. Specifically, we focus on Brij 98

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service