Skip to Content
MilliporeSigma
All Photos(1)

Documents

439193

Sigma-Aldrich

Methanol

≥99.9%, gradient grade, suitable for HPLC, suitable for EPA 1613

Sign Into View Organizational & Contract Pricing

Synonym(s):
Methyl alcohol
Linear Formula:
CH3OH
CAS Number:
Molecular Weight:
32.04
Beilstein/REAXYS Number:
1098229
EC Number:
MDL number:
UNSPSC Code:
12190000
PubChem Substance ID:
NACRES:
NA.05

grade

gradient grade

Quality Level

agency

suitable for EPA 1613

vapor density

1.11 (vs air)

vapor pressure

410 mmHg ( 50 °C)
97.68 mmHg ( 20 °C)

assay

≥99.9%

form

liquid

autoignition temp.

725 °F

expl. lim.

36 %

technique(s)

HPLC: suitable

impurities

H2SO4, passes test (darkened)
≤0.0002 meq/g Titr. base
≤0.0003 meq/g Titr. acid
≤0.001% acetaldehyde
≤0.001% acetone
≤0.001% formaldehyde
≤0.03% water

evapn. residue

≤0.0003%

color

APHA: ≤10
clear

refractive index

n20/D 1.329 (lit.)

bp

64.7 °C (lit.)

mp

−98 °C (lit.)

density

0.791 g/mL at 25 °C (lit.)

HPLC-gradient

≤5 mAU at 254 nm

λ

H2O reference

UV absorption

λ: 203 nm Amax: ≤1.0
λ: 210 nm Amax: ≤0.60
λ: 220 nm Amax: ≤0.30
λ: 230 nm Amax: ≤0.15
λ: 240 nm Amax: ≤0.05
λ: 260-400 nm Amax: ≤0.01

suitability

passes test for HPLC

application(s)

food and beverages

format

neat

SMILES string

CO

InChI

1S/CH4O/c1-2/h2H,1H3

InChI key

OKKJLVBELUTLKV-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

Methanol (MeOH) is an organic solvent with a wide range of industrial applications. It is the main component of lithium batteries. It can be prepared by hydrogenation of CO2 under various conditions. MeOH is a toxic alcohol employed for denaturing ethyl alcohol. A study reports the preparation of biodiesel from canola oil using methanol under supercritical conditions.

Application

High-purity, multipurpose solvent, tested for suitability in:
  • HPLC with gradient analysis
  • Spectrophotometry
  • Residual testing
  • LC-MS applications

Used as a solvent/reagent to determine total phenols content, anti-DPPH activity and the content of antioxidants in honeybee drone blood homogenate (DBH) samples.
Meets ACS specifications.

Preparation Note

Product filtered through a 0.2 μm filter

signalword

Danger

Hazard Classifications

Acute Tox. 3 Dermal - Acute Tox. 3 Inhalation - Acute Tox. 3 Oral - Flam. Liq. 2 - STOT SE 1

target_organs

Eyes,Central nervous system

wgk_germany

WGK 2

flash_point_f

closed cup

flash_point_c

closed cup


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 7

1 of 7

Methanol ACS reagent, ≥99.8%

Sigma-Aldrich

179337

Methanol

Acetonitrile suitable for HPLC, gradient grade, ≥99.9%

Sigma-Aldrich

439134

Acetonitrile

Methanol anhydrous, 99.8%

Sigma-Aldrich

322415

Methanol

Acetonitrile suitable for HPLC, gradient grade, ≥99.9%

Sigma-Aldrich

34851

Acetonitrile

Methanol for liquid chromatography LiChrosolv®

Supelco

1.06018

Methanol

Methanol ACS reagent, ≥99.8%

Sigma-Aldrich

676780

Methanol

Nomaan M Rezayee et al.
Journal of the American Chemical Society, 137(3), 1028-1031 (2015-01-17)
This Communication describes the hydrogenation of carbon dioxide to methanol via tandem catalysis with dimethylamine and a homogeneous ruthenium complex. Unlike previous examples with homogeneous catalysts, this CO2-to-CH3OH process proceeds under basic reaction conditions. The dimethylamine is proposed to play
Methanol.
R Von Burg
Journal of applied toxicology : JAT, 14(4), 309-313 (1994-07-01)
Combining Low-Pressure CO2 Capture and Hydrogenation To Form Methanol.
Khusnutdinova JR, et al.
ACS Catalysis, 5(4), 2416-2422 (2015)
CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods.
Cai W, et al.
Catalysis Today, 242, 193-199 (2015)
CO2 Hydrogenation to Methanol on Supported Au Catalysts under Moderate Reaction Conditions: Support and Particle Size Effects.
Hartadi Y, et al.
ChemSusChem, 8(3), 456-465 (2015)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service