S-(5′-Adenosyl)-L-methionine iodide

≥80% (HPLC), ≥80% (spectrophotometric assay)

AdoMet, SAM
Empirical Formula (Hill Notation):
CAS Number:
Molecular Weight:
Beilstein/REAXYS Number:
EC Number:
MDL number:
PubChem Substance ID:

Quality Level


≥80% (HPLC)
≥80% (spectrophotometric assay)




cell culture | mammalian: suitable


white to off-white


H2O: 100 mg/mL

shipped in

dry ice

storage temp.


SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide

Related Categories


S-(5′-Adenosyl)-L-methionine (SAM, AdoMet) is used as a primary methyl donor molecule in mammalian cell culture and the first step metabolite in methionine biosynthesis.


5, 25, 100 mg in glass bottle

Biochem/physiol Actions

Methyl donor; cofactor for enzyme-catalyzed methylations, including catechol O-methyltransferase (COMT) and DNA methyltransferases (DNMT). Although present in all cells, it is concentrated in liver where 85% of all methylation reactions occur. It is also involved in regulating liver function, growth, and response to injury.


This material is very unstable at room temperature.

Analysis Note

Purity based on UV and HPLC.


Exclamation mark

Signal Word


Hazard Statements

Precautionary Statements

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves


NONH for all modes of transport

WGK Germany


Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis
Certificate of Origin
Soon Goo Lee et al.
The Journal of biological chemistry, 287(2), 1426-1434 (2011-11-26)
In the malarial parasite Plasmodium falciparum, a multifunctional phosphoethanolamine methyltransferase (PfPMT) catalyzes the methylation of phosphoethanolamine (pEA) to phosphocholine for membrane biogenesis. This pathway is also found in plant and nematodes, but PMT from these organisms use multiple methyltransferase domains...
Benjamin R Duffus et al.
Biochimica et biophysica acta, 1824(11), 1254-1263 (2012-01-25)
Radical S-adenosylmethionine (AdoMet) enzymes comprise a large superfamily of proteins that engage in a diverse series of biochemical transformations through generation of the highly reactive 5'-deoxyadenosyl radical intermediate. Recent advances into the biosynthesis of unique iron-sulfur (FeS)-containing cofactors such as...
Renata Z Jurkowska et al.
Methods in molecular biology (Clifton, N.J.), 791, 157-177 (2011-09-14)
DNA methyltransferases are important enzymes and their inhibition has many potential applications. The investigation of DNA methyltransferases as well as screening for potential inhibitors requires specialized enzyme assays. In this chapter, we describe three DNA methyltransferase assays, each of them...
Laura Gomez-Santos et al.
Methods in molecular biology (Clifton, N.J.), 826, 133-149 (2011-12-15)
S-Adenosylmethionine, abbreviated as SAM, SAMe or AdoMet, is the principal methyl group donor in the mammalian cell and the first step metabolite of the methionine cycle, being synthesized by MAT (methionine adenosyltransferase) from methionine and ATP. About 60 years after...
Jianyu Zhang et al.
Journal of the American Chemical Society, 133(43), 17134-17137 (2011-10-01)
Human catechol-O-methyltransferase (COMT) catalyzes a methyl transfer from S-adenosylmethionine (AdoMet) to dopamine. Site-specific mutants at three positions (Tyr68, Trp38, and Val108) have been characterized with regard to product distribution, catalytic efficiency, and secondary kinetic isotope effects. The series of mutations...

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.