D-Fructose 1,6-bisphosphate trisodium salt hydrate

≥98% (TLC)

Harden-Young ester, Hexose diphosphate trisodium salt hydrate, D(+)Fructofuranose 1,6-diphosphate trisodium salt hydrate
Empirical Formula (Hill Notation):
C6H11Na3O12P2 · xH2O
Molecular Weight:
406.06 (anhydrous basis)
MDL number:
PubChem Substance ID:

Quality Level

biological source



≥98% (TLC)




thin layer chromatography (TLC): suitable

storage temp.


SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide


D-Fructose-1,6-bisphosphate (FBP), a common metabolic sugar, is the precursor of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate in the glycolytic pathway. It may be used as an allosteric activator of enzymes such as pyruvate kinase and NAD+-dependent L-(+)-lactate dehydrogenase, as an inhibitor of acetate kinase and as a substrate to identify and characterize enzymes such as fructose-1,6-bisphosphate aldolase(s) and fructose-1,6-bisphosphatase(s). FBP is studied as a neuroprotective agent in brain injury.


1, 5 g in poly bottle
10 mg in glass bottle

Biochem/physiol Actions

Fructose-1,6-biphosphate (F1,6P) is a glycolytic intermediate produced by the transfer of a phosphate from ATP to fructose-6-phosphate by the enzyme phosphofructokinase. Fructose-1,6-biphosphate, along with fructose-2,6-biphosphate, modulates the activity of phosphofructokinase-1 (PFK-1), the rate-limiting step in glycolysis. During glycolysis, aldolase splits Fructose-1,6-biphosphate into dihydroxacetone phosphate (DHAP) and glyceraldehyde phosphate. Fructose-1,6-biphosphate is also an allosteric activator of the M2 isoform of Pyruvate Kinase (PK-M2), the predominant form of pyruvate kinase in cancer cells.

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves


NONH for all modes of transport

WGK Germany


Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis
Certificate of Origin
Tao Yu et al.
Cell, 174(6), 1549-1558 (2018-08-14)
Engineering microorganisms for production of fuels and chemicals often requires major re-programming of metabolism to ensure high flux toward the product of interest. This is challenging, as millions of years of evolution have resulted in establishment of tight regulation of...
Yasmean Kalam et al.
Clinical toxicology (Philadelphia, Pa.), 50(7), 546-554 (2012-08-09)
Fructose-1,6-diphosphate (FDP) is a metabolite in the glycolytic pathway created from glucose. Exogenously administered FDP increases the yield of ATP from anaerobic glycolysis. FDP reduces ischaemic tissue area in experimentally-induced cerebral and myocardial infarction and improves haemodynamics post-cardiac bypass. We...
Guilherme Vargas Bochi et al.
Inflammation, 35(6), 1786-1792 (2012-07-11)
The accumulation of advanced oxidation protein products (AOPP) has been linked to several pathological conditions. Previous studies have identified AOPP as a novel biomarker of oxidative damage to proteins and a novel class of mediator of inflammation. The aim of...
Gauri S Joshi et al.
Journal of bacteriology, 194(6), 1350-1360 (2012-01-17)
The cbb(I) region of Rhodopseudomonas palustris (Rp. palustris) contains the cbbLS genes encoding form I ribulose-1,5-bisphosphate (RuBP) carboxylase oxygenase (RubisCO) along with a divergently transcribed regulator gene, cbbR. Juxtaposed between cbbR and cbbLS are the cbbRRS genes, encoding an unusual...
Roberto Christ Vianna Santos et al.
Inflammation, 35(3), 1198-1203 (2012-02-14)
It has been previously showed that fructose-1,6-bisphosphate (FBP) has anti-inflammatory and immunomodulatory effects on several experimental inflammation models. However, the effects and mechanism of FBP on Zymosan-induced acute lung injury (ALI) in mice had not been tested. In this study...
Review the 10 steps of glycolysis in the Embden-Meyerhof-Parnas glycolytic pathway. Easily compare reaction stages and buy the enzymes for your life science research.
Read More
We presents an article about the Warburg effect, and how it is the enhanced conversion of glucose to lactate observed in tumor cells, even in the presence of normal levels of oxygen. Otto Heinrich Warburg demonstrated in 1924 that cancer cells show an increased dependence on glycolysis to meet their energy needs, regardless of whether they were well-oxygenated or not.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.