MilliporeSigma
All Photos(7)

Documents

A2056

Sigma-Aldrich

Acetyl coenzyme A trisodium salt

≥93% (HPLC), powder

Sign Into View Organizational & Contract Pricing

Synonym(s):
Acetyl-S- CoA, Acetyl CoA
Empirical Formula (Hill Notation):
C23H35N7O17P3S · 3Na
CAS Number:
Molecular Weight:
875.52
MDL number:
PubChem Substance ID:

Quality Level

assay

≥93% (HPLC)

form

powder

solubility

H2O: 100 mg/mL

storage temp.

−20°C

SMILES string

O[C@H]1[C@](O[C@@H]([C@H]1OP(O)(O)=O)COP(OP(OCC(C)(C)[C@@H](O)C(NCCC(NCCSC(C)=O)=O)=O)(O)=O)(O)=O)([H])N2C3=NC=NC(N)=C3N=C2.[3Na]

InChI

1S/C23H38N7O17P3S.Na/c1-12(31)51-7-6-25-14(32)4-5-26-21(35)18(34)23(2,3)9-44-50(41,42)47-49(39,40)43-8-13-17(46-48(36,37)38)16(33)22(45-13)30-11-29-15-19(24)27-10-28-20(15)30;/h10-11,13,16-18,22,33-34H,4-9H2,1-3H3,(H,25,32)(H,26,35)(H,39,40)(H,41,42)(H2,24,27,28)(H2,36,37,38);/q;+1/p-1/t13-,16-,17-,18?,22-;/m1./s1

InChI key

HNLIOWFIXSPFEC-WLYMNMRISA-M

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
A2181C3019A6861
vibrant-m

A2056

Acetyl coenzyme A trisodium salt

vibrant-m

A2181

Acetyl coenzyme A lithium salt

vibrant-m

C3019

Coenzyme A trilithium salt

vibrant-m

A6861

Acetyl-CoA carboxylase 2 human

solubility

H2O: 100 mg/mL

solubility

H2O: soluble 100 mg/mL, clear, colorless

solubility

-

solubility

-

Quality Level

300

Quality Level

300

Quality Level

200

Quality Level

200

storage temp.

−20°C

storage temp.

−20°C

storage temp.

−20°C

storage temp.

−70°C

form

powder

form

powder

form

powder

form

solution

Gene Information

human ... CHAT(1103), HAT1(8520), KAT2A(2648), KAT2B(8850), KAT5(10524)
mouse ... HAT1(107435), KAT2A(14534), KAT2B(18519), KAT5(81601)
rat ... HAT1(296501), KAT2A(303539), KAT2B(301164), KAT5(192218)

Gene Information

human ... CHAT(1103), HAT1(8520), KAT2A(2648), KAT2B(8850), KAT5(10524)
mouse ... HAT1(107435), KAT2A(14534), KAT2B(18519), KAT5(81601)
rat ... HAT1(296501), KAT2A(303539), KAT2B(301164), KAT5(192218)

Gene Information

-

Gene Information

human ... ACACB(32)

Application

Acetyl-CoA is an essential cofactor and carrier of acyl groups in enzymatic acetyl transfer reactions. Acetyl CoA is formed either by the oxidative decarboxylation of pyruvate in mitochondria, by the oxidation of long-chain fatty acids, or by the oxidative degradation of certain amino acids. Acetyl-CoA is the starting compound for the citric acid cycle (Krebs cycle). Acetyl CoA is also a key precursor in lipid biosynthesis, and the source of all fatty acid carbons. Acetyl-CoA positively regulates the activity pyruvate carboxylase. Acetyl CoA is a precursor of the neurotransmitter acetylcholine. Histone acetylases (HAT) use Acetyl-CoA as the donor for the acetyl group use in the post-translational acetylation reactions of histone and non-histone proteins.
An essential cofactor in enzymatic acetyl transfer reactions.

Biochem/physiol Actions

Acetyl-CoA is an essential cofactor and carrier of acyl groups in enzymatic acetyl transfer reactions. It is formed either by the oxidative decarboxylation of pyruvate in mitochondria, by the oxidation of long-chain fatty acids, or by the oxidative degradation of certain amino acids. Acetyl-CoA is the starting compound for the citric acid cycle (Kreb′s cycle). It is also a key precursor in lipid biosynthesis, and the source of all fatty acid carbons. Acetyl-CoA positively regulates the activity pyruvate carboxylase. It is a precursor of the neurotransmitter acetylcholine. Histone acetylases (HAT) use Acetyl-CoA as the donor for the acetyl group use in the post-translational acetylation reactions of histone and non-histone proteins.

Preparation Note

Prepared enzymatically

Other Notes

For more more technical information and a complete list of Coenzyme A deriviatives visit the Acyl Transfer Reagents Resource.

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Faceshields, Gloves, type N95 (US)


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Virupakshi Soppina et al.
PloS one, 7(10), e48204-e48204 (2012-10-31)
The αβ-tubulin subunits of microtubules can undergo a variety of evolutionarily-conserved post-translational modifications (PTMs) that provide functional specialization to subsets of cellular microtubules. Acetylation of α-tubulin residue Lysine-40 (K40) has been correlated with increased microtubule stability, intracellular transport, and ciliary
Whitney R Luebben et al.
Proceedings of the National Academy of Sciences of the United States of America, 107(45), 19254-19259 (2010-10-27)
Histone posttranslational modifications and chromatin dynamics are inextricably linked to eukaryotic gene expression. Among the many modifications that have been characterized, histone tail acetylation is most strongly correlated with transcriptional activation. In Metazoa, promoters of transcriptionally active genes are generally
Prabhjot Singh et al.
Protein and peptide letters, 18(5), 507-517 (2011-01-18)
The distinct biochemical function of endoplasmic reticulum (ER) protein Calreticulin (CR) catalyzing the transfer of acyl group from acyloxycoumarin to a receptor protein was termed calreticulin transacylase (CRTAase). The present study, unlike the previous reports of others utilizing CR-deficient cells
Juliette Adjo Aka et al.
Handbook of experimental pharmacology, 206, 1-12 (2011-09-01)
Lysine (K) acetylation refers to transfer of the acetyl moiety from acetyl-CoA to the ε-amino group of a lysine residue. This is posttranslational and reversible, with its level dynamically maintained by lysine acetyltransferases (KATs) and deacetylases (KDACs). Traditionally, eukaryotic KDACs
Carla Angulo-Rojo et al.
ASN neuro, 5(5), e00130-e00130 (2013-11-30)
The Notch pathway is a highly conserved signaling system essential for modulating neurogenesis and promoting astrogenesis. Similarly, the cAMP signaling cascade can promote astrocytic commitment in several cell culture models, such as the C6 glioma cell line. These cells have

Articles

Sigma-Aldrich presents an article about how proliferatively active cells require both a source of carbon and of nitrogen for the synthesis of macromolecules. Although a large proportion of tumor cells utilize aerobic glycolysis and shunt metabolites away from mitochondrial oxidative phosphorylation, many tumor cells exhibit increased mitochondrial activity.

Information on fatty acid synthesis and metabolism in cancer cells. Learn how proliferatively active cells require fatty acids for functions such as membrane generation, protein modification, and bioenergetic requirements. These fatty acids are derived either from dietary sources or are synthesized by the cell.

Protocols

To measure chloramphenicol acetyltransferase activity, this procedure uses DTNB and coenzyme A. The reaction of DTNB with the –SH group on CoA results in a colorimetric increase at 412 nm.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service