Low EEO, for Immunoelectrophoresis

CAS Number:
EC Number:
MDL number:
PubChem Substance ID:

biological source

algae (Gelidium)

Quality Level




electrophoresis: suitable
immunodiffusion: suitable
immunoelectrophoresis: suitable


≤7% water




88 °C±2 °C (1.5% gel)

transition temp

gel point 34-38 °C (1.5% gel)

gel strength

≥1200 g/cm2 (1% gel)

anion traces

sulfate (SO42-): ≤0.20%



InChI key


Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

Agarose contains β-D-galactose and 3,6-anhydro-α-L-galactose, linked by glycosidic bonds β(1-4).


50, 100, 500 g in poly bottle


Agarose is the most popular medium for immunoelectrophoresis because of the large pore size for rapid diffusion and for low background staining by Coomassie Blue G stain. The low EEO and high gel strength is specifically selected and tested for immunoelectrophoresis and immunodiffusion.

Preparation Note

Gel Preparation:
1. Prepare a 1% agarose solution (sufficient for 10 gels 85 mm x 100 mm, 1-1.5 mm thick) by mixing 1.5 g agarose (Catalog No. A4679) in 150 mL of prepared barbital buffer and heat in a boiling water bath until completely dissolved.
2. To prepare one gel, pour 14 mL of agarose solution onto the hydrophilic side of a level, well supported 85 mm x 100 mm sheet of Electrophoresis Film for Agarose Gels (Catalog No. E0264). Pour from the center of the sheet toward its edges forming an even layer of agarose 1-1.5 mm thick.
3. Allow the gels to harden for one hour at 4 °C before using or store at 0-5 °C in an appropriate, plastic wrapped container.

Analysis Note

The following is a list of properties associated with our agaroses:
Sulfate content - used as an indicator of purity, since sulfate is the major ionic group present.
Gel strength - the force that must be applied to a gel to cause it to fracture.
Gel point - the temperature at which an aqueous agarose solution forms a gel as it cools. Agarose solutions exhibit hysteresis in the liquid-to-gel transition - that is, their gel point is not the same as their melting temperature.
Electroendosmosis (EEO) - a movement of liquid through the gel. Anionic groups in an agarose gel are affixed to the matrix and cannot move, but dissociable counter cations can migrate toward the cathode in the matrix, giving rise to EEO. Since electrophoretic movement of biopolymers is usually toward the anode, EEO can disrupt separations because of internal convection.

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves


NONH for all modes of transport

WGK Germany


Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Agarose and its derivatives as supports for enzyme immobilization
Zucca P, et al.
Molecules (Basel), 21(11), 1577-1577 (2016)
Michael J Lafferty et al.
The Journal of biological chemistry, 288(40), 28524-28534 (2013-08-21)
Elevated triglycerides are associated with an increased risk of cardiovascular disease, and lipoprotein lipase (LPL) is the rate-limiting enzyme for the hydrolysis of triglycerides from circulating lipoproteins. The N-terminal domain of angiopoietin-like protein 4 (ANGPTL4) inhibits LPL activity. ANGPTL4 was...
Sujith V W Weerasinghe et al.
Journal of medicinal chemistry, 51(18), 5542-5551 (2008-08-30)
Histone deacetylase 1 (HDAC1) has been linked to cell growth and cell cycle regulation, which makes it a widely recognized target for anticancer drugs. Whereas variations of the metal-binding and capping groups of HDAC inhibitors have been studied extensively, the...
Julia Dahlmann et al.
Biomaterials, 34(10), 2463-2471 (2013-01-22)
In most pluripotent stem cell differentiation protocols the formation of embryoid bodies (EBs) is an important step. Here we describe a rapid, straightforward soft lithography approach for the preparation of hydrophilic silicon masters from different templates and the subsequent production...
Benjamin Pluvinage et al.
The Journal of biological chemistry, 288(39), 28078-28088 (2013-08-08)
The bacteria that metabolize agarose use multiple enzymes of complementary specificities to hydrolyze the glycosidic linkages in agarose, a linear polymer comprising the repeating disaccharide subunit of neoagarobiose (3,6-anhydro-l-galactose-α-(1,3)-d-galactose) that are β-(1,4)-linked. Here we present the crystal structure of a...
Related Content
Nancy-520 for DNA Detection and Quantitation
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.