Monoclonal Anti-Vimentin−Cy3 antibody produced in mouse

clone V9, purified immunoglobulin, buffered aqueous solution

Monoclonal Anti-Vimentin

Quality Level

biological source


antibody form

purified immunoglobulin

antibody product type

primary antibodies


V9, monoclonal


buffered aqueous solution

mol wt

antigen ~58 kDa

species reactivity

chicken, rat, bovine, feline, hamster, gerbil, horse, canine, rabbit, monkey, pig, human


direct immunofluorescence: 1:200 using cultured cells
immunohistochemistry (formalin-fixed, paraffin-embedded sections): 1:50 using human tonsil
immunohistochemistry (frozen sections): suitable using human tonsil




CY3 conjugate

UniProt accession no.

shipped in

wet ice

storage temp.


Gene Information

human ... VIM(7431)
rat ... Vim(81818)

Looking for similar products? Visit Product Comparison Guide

General description

Monoclonal Anti-Vimentin (mouse IgG1 isotype) is derived from the hybridoma produced by the fusion of mouse myeloma cells and splenocytes from immunized BALB/c mice. Vimentin is expressed in breast myoepithelial cells, osteocytes, Langerhans cells of the skin, Schwann cells and astrocytes.
Vimentin is one of the five major groups of intermediate filaments with a molecular mass of 57 kDa. Intermediate filaments (IFs) with characteristic 10 nm diameter are a distinct class of molecularly heterogenous cytoskeletal filaments defined by ultrastructural, immunological and biochemical criteria. IFs differ significantly from the other cytoskeletal elements of the cell, namely microtubules and microfilaments and are components of most eukaryotic cells.


The antibody localizes vimentin in fibroblasts, endothelial cells, lymphoid tissue and melanocytes in immunohistochemical staining. It also stains vimentin in sarcomas, lymphomas, and melanomas.


pig eye lens vimentin.


Monoclonal Anti-Vimentin-Cy3 antibody produced in mouse has been used in:
  • immunofluorescence and confocal microscopy
  • cytoskeleton staining
  • double labeling experiments
  • immunohistochemical
  • immunocytochemical localozation

Biochem/physiol Actions

Cy3 Monoclonal Anti-Vimentin reacts with normal and pathological tissue of mesenchymally-derived cells, lens tissue and various cultured cells. It localizes vimentin in fibroblasts, lipocytes, endothelial cells, some lymphoid cells, melanocytes, macrophages, and chondrocytes. The antibody stains tumors derived from these cells, including sarcomas, most lymphomas, melanomas and their metastatic lesions. Co-expression of vimentin with keratin was described in most carcinomas of certain sites (e.g., kidney and thyroid) and certain carcinomas of other sites (e.g., breast).
Vimentin was found to be important for stabilizing the architecture of the cytoplasm. It was found, that activated macrophages secrete vimentin into the extracellular space in vitro.

Physical form

Solution in 0.01 M phosphate buffered saline, pH 7.4, containing 1% bovine serum albumin and 15 mM sodium azide

Storage and Stability

Store at 2-8 °C. Protect from prolonged exposure to light. If slight turbidity occurs upon prolonged storage, clarify the solution by centrifugation before use.

Legal Information

Cy is distributed under license from Amersham Biosciences Limited.


Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves


NONH for all modes of transport

WGK Germany


Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis

Certificate of Origin

Cancer cell motility is affected through 3D cell culturing and SCF/c-Kit pathway but not by X-irradiation
Eberle F, et al.
Radiotherapy and Oncology : Journal of the European Society for Therapeutic Radiology and Oncology, 119(3) (2016)
HaYeun Ji et al.
Biomaterials, 85, 180-194 (2016-02-14)
Access to smooth muscle cells (SMC) would create opportunities for tissue engineering, drug testing, and disease modeling. Herein we report the direct conversion of human endothelial progenitor cells (EPC) to induced smooth muscle cells (iSMC) by induced expression of MYOCD....
Endometrial stromal and epithelial cells exhibit unique aberrant molecular defects in patients with endometriosis
Logan PC, et al.
Reproductive Sciences, 25(1) (2018)
Morphology of the myoepithelial cell: immunohistochemical characterization from resting to motile phase
Beha G, et al.
TheScientificWorldJournal, 2012 (2012)
Coexpression of keratin-and vimentin-type intermediate filaments in human metastatic carcinoma cells
Ramaekers FC, et al.
Proceedings of the National Academy of Sciences of the USA, 80(9), 2618-2622 (1983)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.