CAPHOS

Sigma-Aldrich

Calcium Phosphate Transfection Kit

Most cost effective transfection reagent kit for transient and stable transfection of DNA into mammalian cells

EC Number:
NACRES:
NA.85

Quality Level

grade

for molecular biology

form

solution

usage

 kit sufficient for 160 transfections (6 cm dishes)
 kit sufficient for 400 transfections (3.5 cm dishes)
 kit sufficient for 80 transfections (10 cm dishes)

application(s)

transfection: suitable

shipped in

dry ice

storage temp.

−20°C

Related Categories

General description

Calcium phosphate transfection is a commonly used method for the introduction of DNA into eukaryotic cells. This technique has been used to obtain both transient and stable transfections in a wide variety of cell types.

Application

Calcium Phosphate Transfection Kit has been used:
  • to enable transfection
  • to transfect Hek293T cells
  • to transfect H29D cells

Suitable for transient and stable transfection of DNA into cultured mammalian cells. The following cells have successfully been transfected using the calcium phosphate method:

BAEC
Bowels melanoma cells
CHO K1
COS-7
Fibroblasts (human embryonic, neo derm)
HEK293
Huh 7
IMR-90
LLC (Lewis Lung Carcinoma)
NIH3T3
PC-12
PCI-13
SH-Sy5Y
SK-Hep-1
T47D

Features and Benefits

  • Suitable for transient and stable transfection
  • Reproducible for a wide range of cell types
  • Widely referenced
  • Inexpensive

Components

The Calcium Phosphate Transfection Kit contains:
5 ml 2.5M CaCl2 (C2052)
25 ml 2x HEPES Buffered Saline (H1012)
25 ml molecular biology grade water (W4502)

Principle

The procedure is based on slow mixing of HEPES-buffered saline containing sodium phosphate with a CaCl2 solution containing the DNA. A DNA-calcium phosphate co-precipitate forms, which adheres to the cell surface and is taken up by the cell, presumably by endocytosis.

Other Notes

The protocol was developed for transient transfection of CHO cells using pSV40-CAT plasmid as a reporter gene.

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Precautionary Statements

hazcat

Eye Irrit. 2

storage_class_code

12 - Non Combustible Liquids

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificate of Analysis

Certificate of Origin

  1. Which document(s) contains shelf-life or expiration date information for a given product?

    If available for a given product, the recommended re-test date or the expiration date can be found on the Certificate of Analysis.

  2. How do I get lot-specific information or a Certificate of Analysis?

    The lot specific COA document can be found by entering the lot number above under the "Documents" section.

  3. How do I find price and availability?

    There are several ways to find pricing and availability for our products. Once you log onto our website, you will find the price and availability displayed on the product detail page. You can contact any of our Customer Sales and Service offices to receive a quote.  USA customers:  1-800-325-3010 or view local office numbers.

  4. What is the Department of Transportation shipping information for this product?

    Transportation information can be found in Section 14 of the product's (M)SDS.To access the shipping information for this material, use the link on the product detail page for the product. 

  5. Why do I see a precipitate in my cell culture after calcium-phosphate transfection?

    The precipitate is normal to see - this is the calcium/DNA precipitate the cell will internalize during the transfection process.  If bubbled correctly, the precipitates will be very fine and regular sized, then evenly distributed over the cells.

  6. Is low cell passage number an important consideration for transfection?

    Yes, we recommend cells are at a low passage when being  used for any application, including transfection.  The reason why depends on what type of cells they are.  Primary cells will undergo a finite number of divisions, and as they get closer to senesence they divide more slowly - both affecting their ability to take up DNA (transient transfection), and minimizing their abillity to incorporate the DNA into the genome (stable selection).Cultured common cell lines are often immortalized, and generally continue to aquire mutations, leading to a heterogenous population that may perform differently from cells of lower passage number - leading to results that are not reproducible.

  7. Is the size of the plasmid an important consideration for transfection?

    The size of the plasmid should be considered when selecting a transfection reagent with the best efficiency.  In general, larger sized plasmids should easily transfect with readily available transfection reagents, as along as the plasmid DNA is of high purity.

  8. Is optimizing the transfection protocol important?

    For many common cell lines, transfection reagent efficiency is very high and the protocols will not require any optimization.  For hard-to-transfect cells or those ultimately expressing a toxic protein, the protocol should be optimized for best transfection efficiency.  Taking time to optimize will give you more transfected cells with each procedure, which can mean more protein expressed and results that are reproducible.

  9. How do I choose a transfection reagent?

    There are many guides that help you select a transfection reagent.  In general, consider:The type of cell(s) you will transfectThe type of nucleic acid or protein you will introduce to the cellThe composition of your cell culture mediumThe need for stable or transient transfectionThe equipment you have availableThe other factors important to you - cost, protocol flexibility, ease of use, etc.

  10. What quality does the DNA need to be in order to use it for transfection?

    The DNA needs to be good quality or it may cause the cells to lyse and/or they won't transfect efficiently.  Plasmid DNA prepared with a column-based DNA purification kit is suitable for transfections.  Sigma's GenElute Minprep, Midiprep and Maxiprep kits work well for DNA plasmid purification.  After preparing the DNA, confirm the OD A260:A280 ratio is greater than 1.6 for use in plasmid transfections.

A Calcium Phosphate Transfection
Ausubel, F. et al (ed.)
Short Protocols in Molecular Biology, 3rd, 9-9 (1995)
M Wigler et al.
Cell, 14(3), 725-731 (1978-07-01)
Previous studies from our laboratories have demonstrated the feasibility of transferring the thymidine kinase (tk) gene from restriction endonuclease-generated fragments of herpes simplex virus (HSV) DNA to cultured mammalian cells. In this study, high molecular weight DNA from cells containing...
Munjin Kwon et al.
Methods in molecular biology (Clifton, N.J.), 1018, 107-110 (2013-05-18)
The calcium phosphate transfection is a widely used method for introducing foreign DNA plasmids into cells. Mechanisms underlying this transfection method are not yet defined; however, DNA-calcium phosphate precipitates are internalized by the cells and DNA is efficiently expressed in...
Virginie Mournetas et al.
Journal of biological methods, 3(4), e55-e55 (2016-10-04)
Gene silencing techniques, including RNA interference methodologies, are widely used in reverse genetics to study the role of specific genes in biological processes. RNA interference has become easier to implement thanks to the RNAi Consortium (TRC), which has developed libraries...
A new chimeric protein represses HIV-1 LTR-mediated expression by DNA methylase
Martinez-Colom A, et al.
Antiviral research, 98(3), 394-400 (2013)
Articles
Transfection is the introduction of DNA, RNA, or proteins into eukaryotic cells and is used in research to study and modulate gene expression. Thus, transfection techniques and protocols serve as an analytical tool that facilitates the characterization of genetic functions, protein synthesis, cell growth and development.
Read More
This brief webinar provides an overview of what transfection is and the methods that are used to introduce DNA or RNA into eukaryotic cells.
Read More
Protocols
Calcium phosphate transfection is a common method for the introduction of DNA into eukaryotic cells. This protocol can be optimized for use with a wide variety of cell types.
Read More
Related Content
Browse our convenient transfection reagent selection guide to match the best reagent for your specific cell line and application needs.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service