H107

Sigma-Aldrich

(2-Hydroxypropyl)-β-cyclodextrin

powder

CAS Number:
EC Number:
PubChem Substance ID:
NACRES:
NA.77

Quality Level

biological source

synthetic (organic)

assay

≥98% (TLC)

form

powder

mol wt

estimated mol wt ~1396 Da (Average degree of substitution is 0.5-1.3 unit of 2-hydroxypropyl (C3H7O) per glucose unit)

solubility

H2O: soluble

storage temp.

room temp

SMILES string

CC(O)COCC1OC2OC3C(COCC(C)O)OC(OC4C(COCC(C)O)OC(OC5C(COCC(C)O)OC(OC6C(COCC(C)O)OC(OC7C(COCC(C)O)OC(OC8C(COCC(C)O)OC(OC1C(OCC(C)O)C2OCC(C)O)C(OCC(C)O)C8OCC(C)O)C(OCC(C)O)C7OCC(C)O)C(OCC(C)O)C6OCC(C)O)C(OCC(C)O)C5OCC(C)O)C(OCC(C)O)C4OCC(C)O)C(OCC(C)O)C3OCC(C)O

InChI

1S/C63H112O42/c1-22(64)8-85-15-29-50-36(71)43(78)57(92-29)100-51-30(16-86-9-23(2)65)94-59(45(80)38(51)73)102-53-32(18-88-11-25(4)67)96-61(47(82)40(53)75)104-55-34(20-90-13-27(6)69)98-63(49(84)42(55)77)105-56-35(21-91-14-28(7)70)97-62(48(83)41(56)76)103-54-33(19-89-12-26(5)68)95-60(46(81)39(54)74)101-52-31(17-87-10-24(3)66)93-58(99-50)44(79)37(52)72/h22-84H,8-21H2,1-7H3/t22?,23?,24?,25?,26?,27?,28?,29-,30-,31?,32?,33?,34?,35?,36?,37-,38?,39-,40+,41+,42+,43?,44+,45?,46+,47+,48+,49+,50+,51+,52-,53-,54-,55-,56-,57+,58-,59+,60-,61-,62-,63-/m1/s1

InChI key

ODLHGICHYURWBS-RYJYQAAZSA-N

Looking for similar products? Visit Product Comparison Guide

General description

Cyclodextrins are cyclic oligosaccharides consisting of 6, 7, or 8 glucopyranose units, usually referred to as α-, β-, or γ-cyclodextrins, respectively. These compounds have rigid doughnut-shaped structures making them natural complexing agents. The unique structures of these compounds owe their stability to intramolecular hydrogen bonding between the C2- and C3-hydroxyl groups of neighboring glucopyranose units. The molecule takes on the shape of a torus with the C2- and C3-hydroxyls located around the larger opening and the more reactive C6-hydroxyl aligned around the smaller opening. The arrangement of C6-hydroxyls opposite the hydrogen bonded C2- and C3-hydroxyls forces the oxygen bonds into close proximity within the cavity, leading to an electron rich, hydrophobic interior. The size of this hydrophobic cavity is a function of the number of glucopyranose units forming the cyclodextrin.

The solubility of natural cyclodextrins is very poor. In the late 1960′s, it was discovered that chemical substitutions at the 2, 3, and 6 hydroxyl sites would greatly increase solubility. Most chemically modified cyclodextrins are able to achieve a 50% (w/v) concentration in water.

Cavity size is the major determinant as to which cyclodextrin is used in complexation. The cavity diameter of β-cyclodextrins or β-glucopyranose unit compounds is well-suited for use with molecules the size of hormones, vitamins and many compounds frequently used in tissue and cell culture applications. For this reason, ß-cyclodextrin is most commonly used as a complexing agent.

Application

(2-Hydroxypropyl)-β-cyclodextrin has been used:
  • to investigate its effects on cholesterol homeostasis
  • for the kindling procedure in mice and hippocampal electrographic analysis
  • to improve poor prepulse inhibition (PPI) in mice
The solubility of lipophilic drugs increases linearly with the concentration of hydroxypropyl-β-cyclodextrin (HBC) in aqueous solution because of the complex between HBC and the drug. This guest-host type complex is formed between the drug and the non-polar cavity in the HBC that results in enhanced solubility. Solutions may be lyophilized to produce freely soluble powders. Non-toxic in rabbits and mice.

Packaging

5, 5×5, 100 g in poly bottle

Personal Protective Equipment

dust mask type N95 (US),Eyeshields,Gloves

RIDADR

NONH for all modes of transport

WGK Germany

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Weekly cyclodextrin administration normalizes cholesterol metabolism in nearly every organ of the Niemann-Pick type C1 mouse and markedly prolongs life
Ramirez CM, et al.
Pediatric Research, 68(4), 309-309 (2010)
Variables affecting prepulse inhibition of the startle reflex and the response to antipsychotics in DBA/2NCrl mice
Flood DG, et al.
Psychopharmacology, 195(2), 203-211 (2007)
Normalization of cholesterol homeostasis by 2-hydroxypropyl-beta-cyclodextrin in neurons and glia from Niemann-Pick C1-deficient mice
Peake KB and Vance JE
The Journal of biological chemistry, jbc-M111 (2012)
Platelet-activating factor receptor antagonism targets neuroinflammation in experimental epilepsy
Musto AE and Samii M
Epilepsia, 52(3), 551-561 (2011)
Normalization of cholesterol homeostasis by 2-hydroxypropyl-beta-cyclodextrin in neurons and glia from Niemann-Pick C1-deficient mice
Peake KB and Vance JE
The Journal of biological chemistry, jbc-M111 (2012)
Articles
Solubility of common cell culture components in water and in a solution of 2-Hydroxylpropyl beta-cyclodextrin. Cyclodextrin is a non-toxic compound useful for its ability to solubilize fat soluble vitamins and hormones.
Read More
Many metabolically important compounds, such as lipid-soluble vitamins and hormones, have very low solubilities in aqueous solutions. Various techniques have been used to solubilize these compounds in tissue culture, cell culture, or other water-based applications.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon

MilliporeSigma

Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.