HIS-Select® Nickel Magnetic Agarose Beads



(Supplied as a 50% slurry suspension in 30% Ethanol.)

Quality Level

shelf life

2 yr (Unopened product)


6% beaded magnetic agarose


≥15 mg/mL binding capacity

storage temp.


General description

HIS-Select Magnetic Agarose Beads consist of paramagnetic, immobilized metal-ion affinity chromatography (IMAC) resin that contain a proprietary quadridentate chelate, which is bound with nickel and covalently attached through a non-charged, hydrophilic linker to magnetic beaded agarose. The magnetic properties of the beads aid in manipulations, such as repetitive washings, and recovery of the protein bound beads. This leads to greater experimental reproducibility and more accurate quantitation of the His-tagged proteins of interest.


The HIS-Select Nickel Magnetic Agarose Beads are designed for use in automated and small-scale affinity capture (molecular pull-down) purifications of histidine-tagged protein / His-tag protein while exhibiting low non-specific binding of other proteins. The beads can be used to purify His-tagged proteins under native and denaturing conditions.

Legal Information

HIS-Select is a registered trademark of Sigma-Aldrich Co. LLC

Signal Word


Target Organs

Respiratory Tract


UN1170 - class 3 - PG 2 - Ethanol, solution

WGK Germany


Flash Point(F)

86.0 °F

Flash Point(C)

30 °C

Mei Suen Kong et al.
Science signaling, 12(567) (2019-02-07)
T cell activation is initiated by signaling molecules downstream of the T cell receptor (TCR) that are organized by adaptor proteins. CIN85 (Cbl-interacting protein of 85 kDa) is one such adaptor protein. Here, we showed that CIN85 limited T cell...
Sonja Hänzelmann et al.
Clinical epigenetics, 7, 19-19 (2015-03-13)
Primary cells enter replicative senescence after a limited number of cell divisions. This process needs to be considered in cell culture experiments, and it is particularly important for regenerative medicine. Replicative senescence is associated with reproducible changes in DNA methylation...
Wei Wan et al.
Molecular cell, 72(2), 303-315 (2018-10-20)
mTORC1, the major homeostatic sensor and responder, regulates cell catabolism mainly by targeting autophagy. Here, we show that mTORC1 directly controls autophagosome formation via phosphorylation of WIPI2, a critical protein in isolation membrane growth and elongation. mTORC1 phosphorylates Ser395 of...
Philip Vitorino et al.
Nature, 519(7544), 425-430 (2015-03-25)
Cell migration is a stepwise process that coordinates multiple molecular machineries. Using in vitro angiogenesis screens with short interfering RNA and chemical inhibitors, we define here a MAP4K4-moesin-talin-β1-integrin molecular pathway that promotes efficient plasma membrane retraction during endothelial cell migration....
Yun Wei et al.
Journal of materials chemistry. B, 1(15), 2066-2071 (2013-04-21)
The imidazolium cation was chosen as protein selective affinity group and a kind of ionic liquid magnetic microspheres was developed by immobilizing imidazolium cations onto the surface of silica-coated magnetic microspheres to form imidazolium ionic liquid modified magnetic microspheres (Fe3O4@SiO2@IL)....
Related Content
Protein purification techniques, reagents, and protocols for purifying recombinant proteins using methods including, ion-exchange, size-exclusion, and protein affinity chromatography.
Read More
Protein expression technologies for expressing recombinant proteins in E. coli, insect, yeast, and mammalian expression systems for fundamental research and the support of therapeutics and vaccine production.
Read More
Pull-down assays, reagents, and protocols for investigating in vitro protein-protein interactions using affinity or GST pull-down, tandem affinity purification (TAP), and co-immunoprecipitation methods.
Read More

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service

Social Media

LinkedIn icon
Twitter icon
Facebook Icon
Instagram Icon


Research. Development. Production.

We are a leading supplier to the global Life Science industry with solutions and services for research, biotechnology development and production, and pharmaceutical drug therapy development and production.

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.

Reproduction of any materials from the site is strictly forbidden without permission.