All Photos(2)




Ribonucleic acid diethylaminoethanol salt

Type IX

Sign Into View Organizational & Contract Pricing

Ribonucleic acid from torula yeast, RNA
CAS Number:
MDL number:


Type IX

Quality Level

storage temp.


Looking for similar products? Visit Product Comparison Guide


Ribonucleic acid (RNA) from torula yeast may be used as a substrate for studying ribonuclease activities of enzymes such as ribonuclease-A, ribonuclease T1 (RNAase) and bougainvillea xbuttiana antiviral protein 1 (BBAP1).

Storage Class

11 - Combustible Solids




Not applicable


Not applicable


Eyeshields, Gloves, type N95 (US)

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).


Product Number
Pack Size/Quantity

Additional examples:





enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Guo-Liang Chew et al.
Development (Cambridge, England), 140(13), 2828-2834 (2013-05-24)
Large-scale genomics and computational approaches have identified thousands of putative long non-coding RNAs (lncRNAs). It has been controversial, however, as to what fraction of these RNAs is truly non-coding. Here, we combine ribosome profiling with a machine-learning approach to validate
Lisa Hui et al.
Obstetrics and gynecology, 121(6), 1248-1254 (2013-07-03)
To identify the tissue expression patterns and biological pathways enriched in term amniotic fluid cell-free fetal RNA by comparing functional genomic analyses of term and second-trimester amniotic fluid supernatants. This was a prospective whole genome microarray study comparing eight amniotic
Giulia Biffi et al.
Nature chemistry, 6(1), 75-80 (2013-12-19)
Following extensive evidence for the formation of four-stranded DNA G-quadruplex structures in vitro, DNA G-quadruplexes have been observed within human cells. Although chemically distinct, RNA can also fold in vitro into G-quadruplex structures that are highly stable because of the
Hilal Kazan et al.
Nucleic acids research, 41(Web Server issue), W180-W186 (2013-06-12)
RBPmotif web server ( implements tools to identify binding preferences of RNA-binding proteins (RBPs). Given a set of sequences that are known to be bound and unbound by the RBP of interest, RBPmotif provides two types of analysis: (i) de
Yvonne Tay et al.
Nature, 505(7483), 344-352 (2014-01-17)
Recent reports have described an intricate interplay among diverse RNA species, including protein-coding messenger RNAs and non-coding RNAs such as long non-coding RNAs, pseudogenes and circular RNAs. These RNA transcripts act as competing endogenous RNAs (ceRNAs) or natural microRNA sponges

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service