Skip to Content
MilliporeSigma
Search Within

254169

Applied Filters:
Keyword:'254169'
Showing 1-9 of 9 results for "254169" within Papers
Motao Zhu et al.
ACS nano, 14(3), 3703-3717 (2020-02-15)
Engineered nanoparticles could trigger inflammatory responses and potentiate a desired innate immune response for efficient immunotherapy. Here we report size-dependent activation of innate immune signaling pathways by gold (Au) nanoparticles. The ultrasmall-size (<10 nm) Au nanoparticles preferentially activate the NLRP3
Aaron S Schwartz-Duval et al.
Nature communications, 11(1), 4530-4530 (2020-09-12)
Various cancer cells have been demonstrated to have the capacity to form plasmonic gold nanoparticles when chloroauric acid is introduced to their cellular microenvironment. But their biomedical applications are limited, particularly considering the millimolar concentrations and longer incubation period of
Bo Chuan Huang et al.
Scientific reports, 9(1), 7589-7589 (2019-05-22)
Shewanella oneidensis MR-1, a bioelectricity generating bacterium, is broadly used in bioremediation, microbial fuel cell and dissimilatory reduction and recovery of precious metals. Herein, we report for the first time that photo induction as a trigger to stimulate gold nanoparticles
Ben Ouyang et al.
Nature materials, 19(12), 1362-1371 (2020-08-12)
Nanoparticle delivery to solid tumours over the past ten years has stagnated at a median of 0.7% of the injected dose. Varying nanoparticle designs and strategies have yielded only minor improvements. Here we discovered a dose threshold for improving nanoparticle tumour
Murat A Yokus et al.
Biosensors & bioelectronics, 153, 112038-112038 (2020-01-29)
Comprehensive metabolic panels are the most reliable and common methods for monitoring general physiology in clinical healthcare. Translation of this clinical practice to personal health and wellness tracking requires reliable, non-invasive, miniaturized, ambulatory, and inexpensive systems for continuous measurement of
Ligand-induced gold nanocrystal superlattice formation in colloidal solution.
Lin XM, et al.
Chemistry of Materials, 11(2), 198-202 (1999)
Arvind Pandey et al.
Nanomaterials (Basel, Switzerland), 10(9) (2020-09-03)
It has been suggested that particle size plays an important role in determining the genotoxicity of gold nanoparticles (GNPs). The purpose of this study was to compare the potential radio-sensitization effects of two different sized GNPs (3.9 and 37.4 nm)
Fink, J. et al.
Chemistry of Materials, 10, 922-922 (1998)
The crystal structure of gold(III) chloride.
Clark ES, et al.
Acta Crystallographica, 11, 284-288 (1958)
Page 1 of 1