Skip to Content
MilliporeSigma
Search Within

724858

Applied Filters:
Keyword:'724858'
Showing 1-23 of 23 results for "724858" within Papers
Pierre Simard et al.
International journal of pharmaceutics, 381(2), 86-96 (2009-05-19)
A promising avenue in cancer therapy using liposomal formulations is the combination of site-specific delivery with triggered drug release. The use of trigger mechanisms in liposomes could be relevant for drugs susceptible to lysosomal hydrolytic/enzymatic degradation. Here, we propose a
Eunice Costa et al.
Langmuir : the ACS journal of surfaces and colloids, 28(26), 10082-10090 (2012-06-09)
The layer-by-layer (LbL) assembly of polyelectrolyte pairs on temperature and pH-sensitive cross-linked poly(N-isopropylacrylamide)-co-(methacrylic acid), poly(NIPAAm-co-MAA), microgels enabled a fine-tuning of the gel swelling and responsive behavior according to the mobility of the assembled polyelectrolyte (PE) pair and the composition of
Sabrina Schmidt et al.
Langmuir : the ACS journal of surfaces and colloids, 27(16), 9801-9806 (2011-07-09)
Charged poly(N-isopropylacrylamide-co-methacrylic acid) [P(NiPAM-co-MAA)] microgels can stabilize thermo- and pH-sensitive emulsions. By placing charged units at different locations in the microgels and comparing the emulsion properties, we demonstrate that their behaviors as emulsion stabilizers are very different from molecular surfactants
J Moselhy et al.
Journal of biomaterials science. Polymer edition, 11(2), 123-147 (2000-03-16)
The pH- and temperature-responsive poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAm/MAA) nanoparticles are of potential application in targeted drug delivery. Their responsive properties in the presence of human serum albumin were investigated using dynamic light scattering (DLS), protein assay, and electron spin resonance (ESR)
Samer R Abulateefeh et al.
Macromolecular bioscience, 11(12), 1722-1734 (2011-10-21)
Many difficulties in treating cancer arise from the problems in directing highly cytotoxic agents to the deseased tissues, cells and intracellular compartments. Many drug delivery systems have been devised to address this problem, including those that show a change in
Ana M Díez-Pascual et al.
Journal of colloid and interface science, 347(1), 79-89 (2010-04-14)
The confinement of polyelectrolyte multilayers of poly-L-lysine (PLL)/poly-L-glutamic acid (PGA) and chitosan (CHIT)/dextran sulfate (DEX) onto soft and porous thermoresponsive poly(N-isopropylacrylamide-co-methacrylic acid) (P(NiPAM-co-MAA)) microgel was studied by dynamic light scattering (DLS) and electrophoretic measurements. DLS demonstrates an "odd-even" effect in
Weitai Wu et al.
Biosensors & bioelectronics, 25(12), 2603-2610 (2010-05-18)
A new class of optical glucose nanobiosensors with high sensitivity and selectivity at physiological pH is described. To construct these glucose nanobiosensors, the fluorescent CdS quantum dots (QDs), serving as the optical code, were incorporated into the glucose-sensitive poly(N-isopropylacrylamide-acrylamide-2-acrylamidomethyl-5-fluorophenylboronic acid)
Eva Díez-Peña et al.
AAPS PharmSciTech, 5(2), e33-e33 (2005-03-12)
A series of poly[(N-isopropylacrylamide)-co-(methacrylic acid)] (P[(N-iPAAm)-co-(MAA)]) hydrogels was investigated to determine the composition that exhibits a better pH-modulated release of diltiazem hydrochloride (DIL.HCl). For this purpose hydrogel slabs were loaded with DIL.HCl by the immersion method, and its release under
V Castro Lopez et al.
International journal of pharmaceutics, 292(1-2), 137-147 (2005-02-24)
A co-polymer of poly(N-isopropylacrylamide) (85%) co-butyl acrylate (10%) co-methacrylic acid (5%) (NIPAM/BA/MAA) (85/10/5) microgel was synthesised and investigated as a potential pH and temperature sensitive transdermal delivery device. Three compounds having different octanol/water partition coefficients and solubilities were incorporated into
Preparation and characterization of thermal- and pH-sensitive nanospheres.
X Y Wu et al.
Pharmaceutical research, 10(10), 1544-1547 (1993-10-01)
Synthesis of novel metal sulfide-polymer composite microspheres exhibiting patterned surface structures.
Chaoliang Bai et al.
Langmuir : the ACS journal of surfaces and colloids, 20(1), 263-265 (2005-03-05)
Yashpal Sharma et al.
International journal of biological macromolecules, 51(4), 627-631 (2012-06-23)
Electrospinning is a versatile method to fabricate nanofibers of a range of polymeric and composite materials suitable as scaffolds for tissue engineering applications. In this study, we report the fabrication and characterization of polyaniline-carbon nanotube/poly(N-isopropyl acrylamide-co-methacrylic acid) (PANI-CNT/PNIPAm-co-MAA) composite nanofibers
Kai Zhang et al.
Biomacromolecules, 5(4), 1248-1255 (2004-07-13)
To elucidate the mechanism of stimuli-responsive permeability and to optimize the design, the nanostructure of polymeric composite membranes, developed in our laboratory, was characterized. The membranes were prepared to contain various amounts of stimuli-responsive nanoparticles of poly(N-isopropylacrylamide-co-methacrylic acid), with or
Ricardo G Sousa et al.
Journal of controlled release : official journal of the Controlled Release Society, 102(3), 595-606 (2005-02-01)
The loading of an antihypertensive cationic drug, diltiazem hydrochloride (DIL.HCl), into poly(N-isopropylacrylamide) [P(N-iPAAm)], poly(methacrylic acid) [P(MAA)], and their poly[(N-isopropylacrylamide)-co-(methacrylic acid)] P[(N-iPAAm)-co-(MAA)] hydrogels as well as their release behaviour have been investigated. For this purpose, two series of hydrogels have been
Yunlu Dai et al.
ACS nano, 6(4), 3327-3338 (2012-03-23)
In this study, we report a new controlled release system based on up-conversion luminescent microspheres of NaYF(4):Yb(3+)/Er(3+) coated with the smart hydrogel poly[(N-isopropylacrylamide)-co-(methacrylic acid)] (P(NIPAM-co-MAA)) (prepared using 5 mol % of MAA) shell. The hybrid microspheres show bright up-conversion fluorescence
Kai Zhang et al.
The Journal of pharmacy and pharmacology, 56(5), 611-620 (2004-05-15)
A new glucose-responsive polymeric composite membrane that provided pulsatile insulin release was developed in our laboratory previously. To develop a clinically useful insulin delivery system, this study was designed to investigate factors influencing insulin stability during delivery by this membrane.
O Meyer et al.
FEBS letters, 421(1), 61-64 (1998-02-14)
Stable liposomes were rendered pH-sensitive by complexation to a polymer that undergoes marked temperature- and pH-dependent water solubility changes. The N-isopropylacrylamide-methacrylic acid copolymer was prepared with or without octadecyl acrylate. At pH below the phase transition of the polymer, egg
Tomonori Hayashi et al.
The Analyst, 129(5), 421-427 (2004-04-30)
We synthesized a temperature-responsive polymer, N-(isopropylacrylamide)-methacrylic acid copolymer, to which poly-l-lysine was introduced. The synthesized polymer as well as the parent polymer showed reversible soluble-insoluble changes in response to temperature changes across the lower critical solution temperature at 32 degree
Kai Zhang et al.
Biomaterials, 25(22), 5281-5291 (2004-04-28)
This work was focused on the investigation of temperature and pH-responsive polymeric composite membranes and their permeability to proteins and peptides in response to environmental stimuli. The composite membranes were prepared from nanoparticles of poly(N-isopropylacrylamide-co-methacrylic acid) of various NIPAAm:MAA ratios
J Taillefer et al.
Journal of pharmaceutical sciences, 89(1), 52-62 (2000-02-09)
pH-responsive polymeric micelles (PM) consisting of random copolymers of N-isopropylacrylamide (NIPA), methacrylic acid (MAA), and octadecyl acrylate (ODA) were prepared and characterized. The critical aggregation concentration, as determined by a fluorescence probe technique, was approximately 10 mg/L in water and
Ester Chiessi et al.
The journal of physical chemistry. B, 114(25), 8301-8312 (2010-06-05)
Polymer microgels of poly(vinyl alcohol)/poly(methacrylate-co-N-isopropyl acrylamide) showed a thermoresponsive behavior, suitable for application in drug delivery (Biomacromolecules 2009, 10, 1589). In this work molecular dynamics (MD) methods were used to explain which structural aspects are determining for thermoresponsivity and how
Chun-Liang Lo et al.
Journal of controlled release : official journal of the Controlled Release Society, 104(3), 477-488 (2005-05-25)
New thermo-responsive, pH-responsive, and biodegradable nanoparticles comprised of poly(D,L-lactide)-graft-poly(N-isopropyl acrylamide-co-methacrylic acid) (PLA-g-P(NIPAm-co-MAA)) were developed by grafting biodegradable poly(D,L-lactide) onto N-isopropyl acrylamide and methacrylic acid. A core-shell type nano-structure was formed with a hydrophilic outer shell and a hydrophobic inner core
Franck Pétriat et al.
Langmuir : the ACS journal of surfaces and colloids, 20(4), 1393-1400 (2005-04-05)
Molecular interactions between a terminally alkylated pH-sensitive N-isopropylacrylamide copolymer DODA-poly(NIPAM-co-MAA) and a monolayer of distearoylphosphatidylcholine (DSPC) at the air/water interface are investigated using the Langmuir balance technique. The compression isotherms ofthe copolymer monolayer at the air-water interface confirm that the
Page 1 of 1