Search Within


Applied Filters:
Showing 1-11 of 11 results for "cls431751" within Papers
Zili Zhang et al.
Redox biology, 36, 101619-101619 (2020-08-31)
Ferroptosis is a recently discovered form of programmed cell death, but its regulatory mechanisms are not fully understood. In the current study, we reported that the BRD7-P53-SLC25A28 axis played a crucial role in regulating ferroptosis in hepatic stellate cells (HSCs).
Joanna Kalucka et al.
Cell, 180(4), 764-779 (2020-02-16)
The heterogeneity of endothelial cells (ECs) across tissues remains incompletely inventoried. We constructed an atlas of >32,000 single-EC transcriptomes from 11 mouse tissues and identified 78 EC subclusters, including Aqp7+ intestinal capillaries and angiogenic ECs in healthy tissues. ECs from
Lamba Omar Sangaré et al.
Cell host & microbe, 26(4), 478-492 (2019-10-11)
Toxoplasma can reach distant organs, especially the brain, leading to a lifelong chronic phase. However, genes involved in related in vivo processes are currently unknown. Here, we use focused CRISPR libraries to identify Toxoplasma genes that affect in vivo fitness. We focus
Paul Yenerall et al.
Cell chemical biology, 27(1), 105-121 (2019-12-31)
RUVBL1 and RUVBL2 (collectively RUVBL1/2) are essential AAA+ ATPases that function as co-chaperones and have been implicated in cancer. Here we investigated the molecular and phenotypic role of RUVBL1/2 ATPase activity in non-small cell lung cancer (NSCLC). We find that RUVBL1/2
Zili Zhang et al.
Autophagy, 16(8), 1482-1505 (2019-11-05)
Ferroptosis is a recently discovered form of programmed cell death, but its regulatory mechanisms remain poorly understood. Here, we show that the RNA-binding protein ZFP36/TTP (ZFP36 ring finger protein) plays a crucial role in regulating ferroptosis in hepatic stellate cells
Kelly C Santos Roballo et al.
Biomaterials, 209, 1-9 (2019-04-26)
Segmental injuries to peripheral nerves (PNs) too often result in lifelong disability or pain syndromes due to a lack of restorative treatment options. For injuries beyond a critical size, a bridging device must be inserted to direct regeneration. PN allografts
Alexandros P Drainas et al.
Cell reports, 31(1), 107465-107465 (2020-04-09)
TP53 deficiency is the most common alteration in cancer; however, this alone is typically insufficient to drive tumorigenesis. To identify genes promoting tumorigenesis in combination with TP53 deficiency, we perform genome-wide CRISPR-Cas9 knockout screens coupled with proliferation and transformation assays
Cristina Morales Torres et al.
Nature communications, 11(1), 1792-1792 (2020-04-15)
Continuous cancer growth is driven by subsets of self-renewing malignant cells. Targeting of uncontrolled self-renewal through inhibition of stem cell-related signaling pathways has proven challenging. Here, we show that cancer cells can be selectively deprived of self-renewal ability by interfering
Josefine Tratwal et al.
Frontiers in endocrinology, 11, 480-480 (2020-10-20)
The bone marrow (BM) exists heterogeneously as hematopoietic/red or adipocytic/yellow marrow depending on skeletal location, age, and physiological condition. Mouse models and patients undergoing radio/chemotherapy or suffering acute BM failure endure rapid adipocytic conversion of the marrow microenvironment, the so-called
Lilianne Barbar et al.
Neuron, 107(3), 436-453 (2020-06-03)
New methods for investigating human astrocytes are urgently needed, given their critical role in the central nervous system. Here we show that CD49f is a novel marker for human astrocytes, expressed in fetal and adult brains from healthy and diseased
José A Jiménez-Torres et al.
EBioMedicine, 42, 408-419 (2019-03-25)
Anti-angiogenic treatment failure is often attributed to drug resistance, unsuccessful drug delivery, and tumor heterogeneity. Recent studies have speculated that anti-angiogenic treatments may fail due to characteristics inherent to tumor-associated blood vessels. Tumor-associated blood vessels are phenotypically different from their
Page 1 of 1