Search Within


Applied Filters:
Showing 1-9 of 9 results for "SAB4501396" within Papers
Hui-Xuan Wu et al.
Endocrine, 73(1), 37-46 (2021-03-22)
17q12 Deletion Syndrome is heterogeneous and the reasons remain unclear. We clarified the clinical characteristics of adulthood diabetes onset 17q12 deletion syndrome and investigated the unclear phenotype-genotype correlation. We collected the clinical history and laboratory results of a family with
Moritz Hunkeler et al.
Nature, 558(7710), 470-474 (2018-06-15)
Acetyl-CoA carboxylase catalyses the ATP-dependent carboxylation of acetyl-CoA, a rate-limiting step in fatty acid biosynthesis1,2. Eukaryotic acetyl-CoA carboxylases are large, homodimeric multienzymes. Human acetyl-CoA carboxylase occurs in two isoforms: the metabolic, cytosolic ACC1, and ACC2, which is anchored to the
Fabrizio Damiano et al.
Biochimica et biophysica acta. Molecular and cell biology of lipids, 1863(4), 388-398 (2018-01-19)
Acetyl-CoA carboxylase 1 (ACC1) is a cytosolic enzyme catalyzing the rate limiting step in de novo fatty acid biosynthesis. There is mounting evidence showing that ACC1 is susceptible to dysregulation and that it is over-expressed in liver diseases associated with
Claudia Tonini et al.
Nutrients, 13(6) (2021-07-03)
Bisphenol A (BPA) is an organic chemical compound widely used for manufacturing plastics. BPA exposure originates principally from the diet, but it can also originate from dermal contact. In over 90% of individuals, including pregnant women, BPA is detectable in
Krishna B Singh et al.
Molecular cancer therapeutics, 18(10), 1800-1810 (2019-08-10)
Increased de novo synthesis of fatty acids is implicated in the pathogenesis of human prostate cancer, but a safe and effective clinical inhibitor of this metabolic pathway is still lacking. We have shown previously that leelamine (LLM) suppresses transcriptional activity
Prenatal Exposure to BPA: The Effects on Hepatic Lipid Metabolism in Male and Female Rat Fetuses
Tonini C, et al.
Nutrients null
Jianqiang Mao et al.
Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7515-7520 (2003-06-18)
Acetyl-CoA carboxylase 1 (ACC1) catalyzes the formation of malonyl-CoA, the C2 donor for de novo synthesis of long-chain fatty acids. We have identified 64 exons, including 7 alternatively spliced minor exons (1A, 1B, 1C, 3, 5A', 5A, and 5B) in
Claudia Tonini et al.
International journal of molecular sciences, 21(4) (2020-02-23)
The homeostatic control of lipid metabolism is essential for many fundamental physiological processes. A deep understanding of its regulatory mechanisms is pivotal to unravel prospective physiopathological factors and to identify novel molecular targets that could be employed to design promising
Krishna B Singh et al.
Carcinogenesis, 39(6), 826-837 (2018-04-19)
Increased de novo synthesis of fatty acids is a rather unique and targetable mechanism of human prostate cancer. We have shown previously that oral administration of sulforaphane (SFN) significantly inhibits the incidence and/or burden of prostatic intraepithelial neoplasia and well-differentiated
Page 1 of 1