• Home
  • Search Results
  • Cumulative solid phase microextraction sampling for gas chromatography-olfactometry of Shiraz wine.

Cumulative solid phase microextraction sampling for gas chromatography-olfactometry of Shiraz wine.

Journal of chromatography. A (2012-04-24)
Sung-Tong Chin, Graham T Eyres, Philip J Marriott
ABSTRACT

Solid phase microextraction (SPME) coupled to gas chromatography-olfactometry (GC-O) is now commonly used for determination of aroma-active compounds, but the method sensitivity and selectivity is restricted by the small volume and limited type of fibre coating phases. In an attempt to enhance the method performance, a cryogenic trapping (CT) approach was investigated in this study by coupling multiple SPME sampling events for wine headspace using GC-O analysis. By performing multiple SPME sampling employing different chemical polymer coatings, desorbed solute from the integrated sampling is accumulated by the CT at the front section of a Wax separation capillary column prior to chromatographic analysis. Results show that the CT was capable of retaining apolar alkane volatiles of decane and greater, and tested polar alcohols, including methanol. Chromatographic signals eluting later than the ethanol peak were found to progressively increase in response, and correlated well, with the cumulative number of SPME samplings. The approach was developed for GC-O screening of potent odorants in Shiraz wine collected from fibre coatings of polyacrylate (PA) and the triple-phase coated polydimethylsiloxane/divinylbenzene/carboxen (PDC). The aromagram for solute derived from a combined introduction of both PA plus PDC fibres (i.e. sequential fibre introduction into the injector; termed as PADC) compared well to the sum of those sampled by using a single fibre coating alone, which comprised of odorants derived from both fibre coatings. Accumulation in the CT of volatile solutes derived from up to 6 repeat PADC sampling events revealed a similar pattern of their aromagrams, though with stronger olfactory stimulus response. This study demonstrated a simple and effective way for enhancing SPME sensitivity and potentially less discrimination during the analysis of wine volatiles. However, the single dimensional GC separation method requires development of an improved separation strategy to better separate individual compounds.

MATERIALS
Product Number
Brand
Product Description

Supelco
Tenax® TA / Carboxen® 1018, glass TD tube, preconditioned, O.D. × L 1/4  in. × 3 1/2  in., Sealed with (Swagelok® End-Fittings), pkg of 10 ea
Supelco
Carboxen®-1010 PLOT Capillary GC Column, L × I.D. 30 m × 0.53 mm, average thickness 30 μm
Supelco
Carboxen® Adsorbent, matrix Carboxen® 569, 20-45 mesh, bottle of 10 g
Supelco
ORBO 78 HBr on Carboxen® 564 specially cleaned (20/45), 400/200 mg, W,W,W separators, O.D. × L 6 mm × 110 mm, pkg of 25 ea
Supelco
Carboxen®-1006 PLOT Capillary GC Column, L × I.D. 30 m × 0.53 mm, average thickness 30 μm
Supelco
Carboxen® Adsorbent, matrix Carboxen® 1000, 60-80 mesh, bottle of 10 g
Supelco
ORBO 90 Carboxen® 564 (20/45), 160/80 mg, W,F,F separators, O.D. × L 6 mm × 75 mm, pkg of 25 ea, for analyte group MEK (methylethyl ketone)
Supelco
Carboxen®-1010 PLOT Capillary GC Column, L × I.D. 30 m × 0.32 mm, average thickness 15 μm
Supelco
Carboxen® Adsorbent, matrix Carboxen® 569, 20-45 mesh, bottle of 500 g
Supelco
Carboxen®-1006 PLOT Capillary GC Column, L × I.D. 30 m × 0.32 mm, average thickness 15 μm
Supelco
Carboxen® Adsorbent, matrix Carboxen® 1003, 40-60 mesh, bottle of 10 g
Supelco
Carboxen® Adsorbent, matrix Carboxen® 1000, 40-60 mesh, bottle of 50 g
Supelco
Carboxen® Adsorbent, matrix Carboxen® 563, 20-45 mesh, bottle of 10 g
Supelco
Carboxen® Adsorbent, matrix Carboxen® 564, 20-45 mesh, bottle of 10 g
Supelco
Carboxen® 1000 Reversible SPE Tube, 200 mg/mL, pk 30
Supelco
Carboxen® 572 for Tobacco Smoke, Adsorbent Bed Wt: (300 mg), cartridge volume 3 mL, pkg of 10 ea
Supelco
ORBO-93 Sorbent Tube, matrix Carboxen® 1000, ORBO tube I.D. × L 6 mm × 95 mm, Bed B 90 mg, Bed A 180 mg, 60/80 mesh, pkg of 25 ea
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 75 μm (CAR/PDMS), for use with manual holder, needle size 24 ga
Supelco
SPME fiber assembly Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), needle size 24 ga, for use with manual holder
Supelco
Carboxen® 569, O.D. × L 1/4  in. × 3 1/2 , glass TD tube, fritted, Sealed with Brass Endcaps, preconditioned, pkg of 10 ea
Supelco
Carboxen® 572 for Tobacco Smoke, Adsorbent Bed Wt: 300 mg, cartridge size 3 mL, pkg of 50 ea
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 75 μm (CAR/PDMS), needle size 23 ga, for use with manual holder
Supelco
SPME fiber assembly Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), needle size 24 ga, StableFlex, for use with manual holder/autosampler
Supelco
Carboxen® 569, glass TD tube, fritted, O.D. × L 1/4  in. × 3 1/2  in., preconditioned, pkg of 10 ea
Supelco
Carboxen® Adsorbent, matrix Carboxen® 564, 20-45 mesh, pack of 144 × 290 mg
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 75 μm (CAR/PDMS), needle size 24 ga, for use with autosampler
Supelco
SPME fiber assembly Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), needle size 24 ga, StableFlex, for use with autosampler
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 75 μm (CAR/PDMS), needle size 23 ga, for use with autosampler
Supelco
SPME fiber assembly Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), needle size 23 ga, StableFlex, for use with manual holder/autosampler, fiber L 2 cm
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 85 μm (CAR/PDMS), needle size 24 ga, for use with manual holder, StableFlex fiber