• Home
  • Search Results
  • Candida albicans Swi/Snf and Mediator Complexes Differentially Regulate Mrr1-Induced MDR1 Expression and Fluconazole Resistance.

Candida albicans Swi/Snf and Mediator Complexes Differentially Regulate Mrr1-Induced MDR1 Expression and Fluconazole Resistance.

Antimicrobial agents and chemotherapy (2017-08-16)
Zhongle Liu, Lawrence C Myers
ABSTRACT

Long-term azole treatment of patients with chronic Candida albicans infections can lead to drug resistance. Gain-of-function (GOF) mutations in the transcription factor Mrr1 and the consequent transcriptional activation of MDR1, a drug efflux coding gene, is a common pathway by which this human fungal pathogen acquires fluconazole resistance. This work elucidates the previously unknown downstream transcription mechanisms utilized by hyperactive Mrr1. We identified the Swi/Snf chromatin remodeling complex as a key coactivator for Mrr1, which is required to maintain basal and induced open chromatin, and Mrr1 occupancy, at the MDR1 promoter. Deletion of snf2, the catalytic subunit of Swi/Snf, largely abrogates the increases in MDR1 expression and fluconazole MIC observed in MRR1GOF mutant strains. Mediator positively and negatively regulates key Mrr1 target promoters. Deletion of the Mediator tail module med3 subunit reduces, but does not eliminate, the increased MDR1 expression and fluconazole MIC conferred by MRR1GOF mutations. Eliminating the kinase activity of the Mediator Ssn3 subunit suppresses the decreased MDR1 expression and fluconazole MIC of the snf2 null mutation in MRR1GOF strains. Ssn3 deletion also suppresses MDR1 promoter histone displacement defects in snf2 null mutants. The combination of this work with studies on other hyperactive zinc cluster transcription factors that confer azole resistance in fungal pathogens reveals a complex picture where the induction of drug efflux pump expression requires the coordination of multiple coactivators. The observed variations in transcription factor and target promoter dependence of this process may make the search for azole sensitivity-restoring small molecules more complicated.

MATERIALS
Product Number
Brand
Product Description

Millipore
ANTI-FLAG® antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution