• Home
  • Search Results
  • Decreased Migration of Dendritic Cells into the Jugular-Nodose Ganglia by the CXCL12 Neutraligand Chalcone 4 in Ovalbumin-Sensitized Asthmatic Mice.

Decreased Migration of Dendritic Cells into the Jugular-Nodose Ganglia by the CXCL12 Neutraligand Chalcone 4 in Ovalbumin-Sensitized Asthmatic Mice.

Neuroimmunomodulation (2018-04-24)
Sebastian Heck, François Daubeuf, Duc Dung Le, Martina Sester, Dominique Bonnet, Robert Bals, Nelly Frossard, Quoc Thai Dinh
ABSTRACT

The chemokine CXCL12 interacting with the CXC receptor 4 (CXCR4) has been reported to play a role in the development and progression of bronchial asthma, but its mechanism of action is still unknown. The objective of this study was to assess the effect of the CXCL12 neutraligand chalcone 4 on the migration of dendritic cells (DCs) in a murine model of allergic airway inflammation. A 21-day ovalbumin (OVA)-induced allergic-airway TH2 inflammation model in BALB/c mice was used. Four groups were sensitized with OVA adsorbed on alum and challenged either with OVA or saline for 4 days. Mice were treated intranasally with chalcone 4 (300 nmol/kg body weight) or solvent 2 h before each OVA or saline challenge; 24 h after the last challenge, CD11c+F4/80- DCs were counted in the bronchoalveolar lavage. Jugular-nodose ganglion complex (JNC) sections were sampled, and for immunofluorescence staining, cryocut sections were prepared. MHC II+F4/80- DCs as well as calcitonin gene-related peptide (CGRP)- and substance P (SP)-positive neuronal cell bodies were analyzed. In OVA-challenged mice, chalcone 4 caused a significantly decreased DC/neuron ratio in the JNC from 51.7% in solvent-treated to 32.6% in chalcone 4-treated mice. In parallel, chalcone 4 also decreased the DC population in BALF from 11.5 × 103 cells in solvent to 4.5 × 103 cells in chalcone 4-treated mice. By contrast, chalcone 4 had no effect on the expression of the neuropeptides CGRP and SP in JNC. This study reported the CXCL12 neutraligand chalcone 4 to affect DC infiltration into the airways and airway ganglia as well as to decrease airway eosinophilic inflammation and, therefore, validated CXCL12 as a new target in allergic disease models of asthma.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(2-Hydroxypropyl)-β-cyclodextrin, powder, BioReagent, suitable for cell culture