MilliporeSigma
  • Home
  • Search Results
  • Autophagy and Ubiquitin-Mediated Proteolytic Degradation of PML/Rarα Fusion Protein in Matrine-Induced Differentiation Sensitivity Recovery of ATRA-Resistant APL (NB4-LR1) Cells: in Vitro and in Vivo Studies.

Autophagy and Ubiquitin-Mediated Proteolytic Degradation of PML/Rarα Fusion Protein in Matrine-Induced Differentiation Sensitivity Recovery of ATRA-Resistant APL (NB4-LR1) Cells: in Vitro and in Vivo Studies.

Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology (2018-08-17)
Dijiong Wu, Keding Shao, Qihao Zhou, Jie Sun, Ziqi Wang, Fei Yan, Tingting Liu, Xiangping Wu, Baodong Ye, He Huang, Yuhong Zhou
ABSTRACT

Although the cure rate of acute promyelocytic leukemia (APL) has exceeded 90%, the relapse/refractory APL that resistant to all-trans retinoic acid (ATRA) or ATO was still serious concern. Matrine (MAT) could improve the differentiation ability of ATRA-resistant APL cells. This study aimed to explore how the APL-specific fusion protein was degraded in ATRA-resistant APL with the application of MAT and ATRA. ATRA-sensitive (NB4) and ATRA-resistant (NB4-LR1) cell lines were used. Nitroblue tetrazolium reduction assay and flow cytometry were used to detect the differentiation ability. The activity of ubiquitin-proteasome and autophagy-mediated pathways in both cells treated with ATRA with or without MAT were compared in protein and mRNA level (Western blot analysis, qRT-PCR), the Fluorescent substrate Suc-LLVY-AMC detection was used to detect the activity of proteasome, and electron microscope for observing autophagosome. MG 132(proteasome inhibitor), rapamycin (autophagy activator), hydroxychloroquine (lysosomal inhibitor) and STI571 [retinoic acid receptor alpha (RARα) ubiquitin stabilizer] were used as positive controls. The effect of MAT was observed in vivo using xenografts. MAT improved the sensitivity of NB4-LR1cells to ATRA treatment, which was consistent with the expression of PML-RARα fusion protein. MAT promoted the ubiquitylation level in NB4-LR1. MG 132 induced the decrease in RARα in both cell lines, and hampered the differentiation of NB4 cells. MAT also promoted the autophagy in NB4-LR1 cells, with an increase in microtubule-associated protein 1 light chain3 (LC3)-II and LC3-II/LC3-I ratio and exhaustion of P62. The expression of LC3II increased significantly in the MAT and ATRA + MAT groups in combination with lysosomal inhibitors. A similar phenomenon was observed in mouse xenografts. MAT induced apoptosis and differentiation. Autophagy and ubiquitin-mediated proteolytic degradation of PML/RARα fusion protein are crucial in MAT-induced differentiation sensitivity recovery of NB4-LR1 cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)
Sigma-Aldrich
Retinoic acid, ≥98% (HPLC), powder
Sigma-Aldrich
Tris(2-pyridylmethyl)amine, 98%