The rise of fragment-based drug discovery.

Nature chemistry (2009-06-01)
Christopher W Murray, David C Rees

The search for new drugs is plagued by high attrition rates at all stages in research and development. Chemists have an opportunity to tackle this problem because attrition can be traced back, in part, to the quality of the chemical leads. Fragment-based drug discovery (FBDD) is a new approach, increasingly used in the pharmaceutical industry, for reducing attrition and providing leads for previously intractable biological targets. FBDD identifies low-molecular-weight ligands (∼150 Da) that bind to biologically important macromolecules. The three-dimensional experimental binding mode of these fragments is determined using X-ray crystallography or NMR spectroscopy, and is used to facilitate their optimization into potent molecules with drug-like properties. Compared with high-throughput-screening, the fragment approach requires fewer compounds to be screened, and, despite the lower initial potency of the screening hits, offers more efficient and fruitful optimization campaigns. Here, we review the rise of FBDD, including its application to discovering clinical candidates against targets for which other chemistry approaches have struggled.

Product Number
Product Description

DyNAbind® DNA-Encoded Fragment Library